【题目】如图所示,为了改造小区环境,某小区决定要在一块一边靠墙(墙的最大可使用长度12m)的空地上建造一个矩形绿化带.除靠墙一边(AD)外,用长为32m的栅栏围成矩形ABCD.设绿化带宽AB为xm,面积为Sm2,
(1)求S与x的函数关系式,并直接写出x的取值范围;
(2)绿化带的面积能达到128m2吗?若能,请求出AB的长度;若不能,请说明理由;
(3)当x为何值时,满足条件的绿化带面积最大.
【答案】(1)S=﹣2x2+32x(10≤x<16);(2)绿化带的面积不能达到128m2,理由详见解析;(3)当x=10时,绿化带面积最大.
【解析】
(1)依题意易可得BC=32-2x,根据矩形的面积公式可得出S与x的函数关系式,再由0<32-2x≤12可求出x的取值范围;
(2)先将S=128代入(1)中的解析式,求出x,再根据x的取值范围判断即可;
(3)将(1)中的函数关系式化为顶点式,再结合x的取值范围利用二次函数的性质可求得结果.
解:(1)由题意得,BC=32-2x,
∴S=x(32﹣2x)=﹣2x2+32x,
又0<32-2x≤12,解得10≤x<16,
故S与x的函数关系式为S=﹣2x2+32x(10≤x<16);
(2)根据题意得,当S=128时,有﹣2x2+32x=128,
解得:x=8,
又由(1)知10≤x<16,
∴x=8不符合题意,
故绿化带的面积不能达到128m2;
(3)∵S=﹣2x2+32x=﹣2(x﹣8)2+128,
当10≤x<16,y随x的增大而减小,
∴当x=10时,绿化带面积最大.
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用周长为米的篱笆围成.已知墙长米(如图所示),设这个苗圃园垂直于墙的一边长为米.
(1)若苗圃园的面积为平方米,求的值;
(2)若平行于墙的一边长不小于米,这个苗圃园的面积有最大值吗?如果有,求出最大值;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,,,分别交直线、于点、.
(1)如图1,当时,求证:;
(2)如图2,当时,线段、、之间有何数量关系,证明你的结论;
(3)如图3,当时,旋转,问线段之间、、有何数量关系?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则△OAB平移的距离是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,AD=8,以顶点A为圆心作半径为r的圆,若要求另外三个顶点至少有一个在圆内,且至少有一个在圆外,则r的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察猜想
如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为;
(2)问题解决
如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;
(3)拓展延伸
如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,以AB为直径的⊙O交AC边于点DD,点E在BC上,连结BD,DE,∠CDE=∠ABD
(1)证明:DE是⊙O的切线;
(2)若BD=24,sin∠CDE=,求圆⊙O的半径和AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com