精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE的长为(  )
A.2-
3
B.2+
3
C.2+
5
D.
5
-2

∵四边形ABCD是正方形,
∴∠B=∠D=90°,AB=AD,
∵△AEF是等边三角形,
∴AE=EF=AF,
在Rt△ABE和Rt△ADF中
AE=AF
AB=AD

∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
设BE=x,那么DF=x,CE=CF=1-x,
在Rt△ABE中,AE2=AB2+BE2
在Rt△CEF中,FE2=CF2+CE2
∴AB2+BE2=CF2+CE2
∴x2+1=2(1-x)2
∴x2-4x+1=0,
∴x=2±
3
,而x<1,
∴x=2-
3

即BE的长为=2-
3

故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2002年我省退耕还林1600亩,计划2004年退耕还林1936亩,问:
(1)这两年平均每年退耕还林的增长率是多少?
(2)若国家平均每年退耕还林的增长率继续保持不变,则2005年退耕还林多少亩?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)所示,长方体的棱AD与AB相等,另一棱长DD′为9cm,按图(2)所示截去一个小长方体,其棱长EF与FG均为1cm,且剩余部分的体积为81cm3,求大长方体的棱AB的长度(结果精确到0.1cm).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.
这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.

【研究速算】
提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.
(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)______.
【研究方程】
提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?
几何建模:
(1)变形:x(x+2)=35.
(2)画四个长为x+2,宽为x的矩形,构造图4
(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)
【研究不等关系】
提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?
几何建模:
(1)画长y+3,宽y+2的矩形,按图5方式分割
(2)变形:2y+5=(y+3)+(y+2)
(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
归纳提炼:
当a>2,b>2时,表示ab与a+b的大小关系.
根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为落实素质教育要求,促进学生全面发展,我市某中学2011年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2013年投资18.59万元.
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2011年到2013年,该中学三年为新增电脑共投资多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,观察下列图形并解答有关问题:
(1)在第n个图中,共有______块白色瓷砖,共有______块黑色瓷砖(均用含n的代数式表示);
(2)若铺设这样的矩形地面共用了506块瓷砖,通过计算求此时n的值;
(3)是否存在n,使得黑瓷砖与白瓷砖块数相等的情形?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把一张长acm,宽bcm的矩形硬纸板的四周各剪去一个边为xcm的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计)
(1)用a,b,x表示纸片剩余部分的面积;
(2)当a=10,b=8时,要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知关于x的方程x2-(2k+1)x+4(k-
1
2
)=0.
(1)求证:无论k取什么实数值,这个方程总有实根.
(2)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.

查看答案和解析>>

同步练习册答案