精英家教网 > 初中数学 > 题目详情
如图,已知直线y=-
1
2
x+1
交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
(1)求点C、D的坐标
(2)求抛物线的解析式
(3)若抛物线与正方形沿射线AB下滑,直至点C落在x轴上时停止,求抛物线上C、E两点间的抛物线所扫过的面积.
(1)如图,分别过C、D两点作x轴、y轴的垂线,垂足为M、N,
由直线AB的解析式得AO=1,OB=2,
由正方形的性质可证△ADN≌△BAO≌△CBM,
∴DN=BM=AO=1,AN=CM=BO=2,
∴C(3,2),D(1,3);


(2)设抛物线解析式为y=ax2+bx+c,
将A(0,1),C(3,2),D(1,3)三点坐标代入,得
c=1
9a+3b+c=2
a+b+c=3

解得
a=-
5
6
b=
17
6
c=1

∴y=-
5
6
x2+
17
6
x+1;

(3)∵AB=BC=
OA2+OB2
=
5

由△BCC′△AOB,得
BC
CC′
=
AO
OB
=
1
2

∴CC′=2BC=2
5

由割补法可知,抛物线上C、E两点间的抛物线所扫过的面积=S?CEE′C′=CC′×BC=2
5
×
5
=10,
即抛物线上C、E两点间的抛物线所扫过的面积为10.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AOB的两直角边OA、OB的长分别是1和3,将△AOB绕O点按逆时针方向旋转90°,至△DOC的位置.
(1)求过C、B、A三点的二次函数的解析式;
(2)若(1)中抛物线的顶点是M,判定△MDC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)己知抛物线y=ax2+bx+c与x轴交于点A(-1,0)和点B(3,0),与y轴正半轴交于点C,且
cos∠CAB=
10
10

(1)求抛物线的解析式;
(2)如图(2),己知点H(0,1).问在抛物线上是否存在点G,使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;
(3)如图(3),抛物线上点D在x轴上的正投影为点E(2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3),
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB=8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.
(1)填空:直线OC的解析式为______;抛物线的解析式为______;
(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;
①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;
②设△BOE的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表给出了一个二次函数的一些取值情况:
x…024
y…3-13
(1)求这个二次函数的解析式,并求出其图象与x轴的交点坐标;
(2)请在如图所示的坐标系中画出这个二次函数的图象;
(3)根据其图象写出x取何值时,y>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y2=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,中国首个空间实验室“天宫一号”于2011年9月29日成功发射.某科技实验小组也自行设计了火箭,经测试,该种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=-t2+10t-15表示,经过______s,火箭达到它的最高点10米处.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某同学在探究二次函数图象时,作直线y=m平行于x轴,交二次函数y=x2的图象于A、B两点,作AC、BD分别垂直于x轴,发现四边形ABCD是正方形.
(1)求m的值及A、B两点的坐标;
(2)如图所示,将抛物线“y=x2”改为“y=x2-2x+2”,直线CD经过抛物线的顶点P与x轴平行,其它关系不变,求m的值及A、B两点的坐标.
(3)如图所示,将图中的改为“y=ax2+bx+c(a>0),其它关系不变,请直接写出m的值及A、B两点的坐标(用含有a、b、c的代数式表示)
[提示:抛物线y=ax2+bx+c的顶点坐标为(-
b
2a
4ac-b2
4a
),对称轴为x=-
b
2a
].

查看答案和解析>>

同步练习册答案