精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200

(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.

解:(1)如图,过点A作AD⊥y轴于点D,

∵AO=OB=2,∴B(2,0)。
∵∠AOB=1200,∴∠AOD=300,∴AD=1,OD=
∴A(-1,)。
将A(-1,),B(2,0)代入,得:
,解得
∴这条抛物线的表达式为
(2)过点M作ME⊥x轴于点E,


∴M(1,),即OE=1,EM=
。∴

(3)过点A作AH⊥x轴于点H ,

∵AH=,HB=HO+OB=3,

,∴

∴要△ABC与△AOM相似,则必须:
,或②
设点C的坐标为(c,0),则根据坐标和勾股定理,有
AO=2,
①由得,,解得。∴C1(4,0)。
②由得,,解得。∴C2(8,0)。
综上所述,如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为(4,0)或(8,0)。

解析试题分析:(1)应用三角函数求出点A的坐标,将A,B的坐标代入,即可求得a、b,从而求得抛物线的表达式。
(2)应用二次函数的性质,求出点M的坐标,从而求得,进而求得∠AOM的大小。
(3)由于可得,根据相似三角形的判定,分两种情况讨论。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知抛物线 轴交于两点A,B,且,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.

(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.

(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线经过A、C两点,与x轴的另一个交点是点D,连接BD.

(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(,0),以OC为直径作半圆,圆心为D.

(1)求二次函数的解析式;
(2)求证:直线BE是⊙D的切线;
(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。

(1)求证:CD是⊙M的切线;
(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标;
(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).

(1)求该二次函数的解析式;
(2)当y>﹣3,写出x的取值范围; 
(3)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.

查看答案和解析>>

同步练习册答案