精英家教网 > 初中数学 > 题目详情
14.利用幂的运算性质进行计算:$\root{4}{25}$×${5}^{\frac{1}{4}}$÷($\sqrt{125}$)${\;}^{\frac{1}{2}}$×$(\frac{1}{5})$${\;}^{-\frac{2}{5}}$.

分析 原式利用分数指数幂,负整数指数幂法则,以及平方根性质计算即可得到结果.

解答 解:原式=$\root{4}{125}$÷$\root{4}{125}$×$\root{5}{25}$=$\root{5}{25}$.

点评 此题考查了实数的运算,分数指数幂,以及负整数指数幂,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边AB相交于点D,与边BC相切于点E.
(1)若AC=6,BC=10,求⊙O的半径.
(2)过点E作弦EF⊥AB于M,连接AF,若AD=4,∠AFE=60°,
①求劣弧EF的长.②求弦EF的长,并说明四边形ACEF是什么特殊四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.阅读下面材料:
实际问题:如图(1),一圆柱的底面半径为5厘米,BC是底面直径,高AB为5厘米,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线.

解决方案:
路线1:侧面展开图中的线段AC,如图(2)所示,
设路线l的长度为l1:则l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路线2:高线AB+底面直径BC,如图(1)所示.
设路线2的长度为l2:则l22=(AB+BC)2=(5+10)2=225.
为比较l1,l2的大小,我们采用“作差法”:
∵l12-l22=25(π2-8)>0∴l12>l22∴l1>l2
小明认为应选择路线2较短.
(1)问题类比:
小亮对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1厘米,高AB为5厘米.”.请你用上述方法帮小亮比较出l1与l2的大小:
(2)问题拓展:
请你帮他们继续研究:在一般情况下,当圆柱的底面半径为r厘米时,高为h厘米,蚂蚁从A点出发沿圆柱表面爬行到点C,当$\frac{r}{h}$满足什么条件时,选择路线2最短?请说明理由.
(3)问题解决:
如图(3)为2个相同的圆柱紧密排列在一起,高为5厘米,当蚂蚁从点A出发沿圆柱表面爬行到C点的两条路线长度相等时,求圆柱的底面半径r.(注:按上面小明所设计的两条路线方式).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在梯形ABCD中,AD∥BC,AE=DE,AC与BD相交于点E,∠ADB=60°,且BE:ED=3:1,BD=12,求梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,四边形ABDC中,∠B=∠D=90°,BC=AB,以AB为直径的⊙O交BC于E.
(1)求证:BE=CD;
(2)若BD=6,CE=2,求tan∠BCO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知OC=OD,∠OAB=∠OBA,求证:AD=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.若x2-2x+y2+6y+10=0,求x,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.电子厂按20:3的比例尺绘制电子元件图纸,已知电子元件是长0.45cm,宽0.3cm,图纸上长、宽各是多少厘米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读材料:
在一次数学活动课上,老师出了一道题:
(1)解方程x2-3x-4=0.
巡视后,老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法).接着,老师请大家用自己熟悉的方法解第二题:
(2)解关于x的方程mx2+(m-4)x-4=0(m为非零常数).
老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变为第三道题:
(3)已知关于x的函数y=mx2+(m-4)x-4(m为非零常数).求证:不论m为何值,此函数的图象恒过两个定点.
老师发现小明第(3)题的解法新颖,小明的解法如下:
∵y=mx2+(m-4)x-4
∴(x2+x)m-4x-4-y=0
∵上式对任何非零实数m都成立,所以
$\left\{\begin{array}{l}{{x}^{2}+x=0}\\{-4x-4-y=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=0}\\{y=-4}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$
∴此函数的图象恒过两个定点(-1,0)和(0,-4).
表扬了小明后,老师给出第四道题:
(4)已知关于x的函数y=mx2+(4m-3)x+4m-2(m为非零常数).求证:不论m为何值,此函数的图象恒过定点.
请你用自己熟悉的方法完成第(1)题和第(2)题,用小明的方法完成第(4)题.

查看答案和解析>>

同步练习册答案