精英家教网 > 初中数学 > 题目详情
如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是(  )
A.∠ABD=∠CB.∠ADB=∠ABCC.D.
C

试题分析:由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
解:∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);
故A与B正确;
时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);
故D正确;
时,∠A不是夹角,故不能判定△ADB与△ABC相似,
故C错误.
故选C.
点评:此题考查了相似三角形的判定.此题难度不大,注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC,D是斜边AC上的一动点(点D不与点A、C重合),过D点作直线截△ABC,使截得的三角形与△ABC相似,请你画出满足条件的所有直线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:?ABCD中,E是BA边延长线上一点,CE交对角线DB于点G,交AD边于点F.
求证:CG2=GF•GE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是(  )
①AC•BC=AB•CD
②AC2=AD•DB
③BC2=BD•BA
④CD2=AD•DB.

A.1个        B.2个         C.3个       D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:

(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将一个矩形纸片ABCD沿AD和BC的中点的连线对折,要使矩形AEFB与原矩形相似,则原矩形的长和宽的比应为(  )
A.2:1B.:1C.:1D.1:1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点M是线段AB的黄金分割点,且AM>MB,若AB=40,则AM=  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若a是2,4,6的第四比例项,则a= ______ ;若x是4和16的比例中项,则x= ______ 
若a:b:c=1:2:5,且a+b+c=40,则a= _______ ,b= _________ ,c= _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP=___________

查看答案和解析>>

同步练习册答案