精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3
与x轴交于点Q,点P是线段BC上的一个动点,过P作PH垂直OB于点H,若PB=5t,且0<t<1,存在使P,H,Q为顶点的三角形与三角形COQ相似的t的值有
2
-1;
7
32
25
32
2
-1;
7
32
25
32
分析:由于直线y=
3
4t
x-3
过C点,因此C点的坐标为(0,-3),那么抛物线的解析式中c=-3,然后将A点的坐标代入抛物线的解析式中即可求出b的值;根据CQ所在直线的解析式即可求出Q的坐标,也就得出了OQ的长,然后求OH的长.利用抛物线的解析式,那么可求出B的坐标.在直角三角形BPH中,可根据BP=5t以及∠CBO的正弦值(可在直角三角形COB中求出).得出BH的长,根据OB的长即可求出OH的长.然后OH,OQ的差的绝对值就是QH的长;再分①当H在Q、B之间.②在H在O,Q之间两种情况进行讨论;根据不同的对应角得出的不同的对应成比例线段来求出t的值.
解答:解:根据题意过点C的直线y=
3
4t
x-3
与x轴交于点Q,得出C点坐标为:(0,-3),
将A点的坐标为(-1,0),C(0,-3)代入二次函数解析式求出:
b=-
9
4
,c=-3;
得y=
3
4
x2-
9
4
x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,
又∵OC=3,
∴BC=5.
由题意,得△BHP∽△BOC,
∵OC:OB:BC=3:4:5,
∴HP:HB:BP=3:4:5,
∵PB=5t,
∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=
3
4t
x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.
②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|;
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH:CO=HP:OQ,得
4-8t
3
=
3t
4t

解得:t=
7
32

若△PHQ∽△COQ,则PH:CO=HQ:OQ,得
3t
3
=
4-8t
4t

即t2+2t-1=0.
解得:t1=
2
-1,t2=-
2
-1(舍去),
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH:CO=HP:OQ,得
8t-4
3
=
3t
4t

解得:t=
25
32

若△PHQ∽△COQ,则PH:CO=HQ:OQ,得
3t
3
=
8t-4
4t

即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在t的值,t1=
2
-1,t2=
7
32
,t3=
25
32

故答案为:
2
-1,
7
32
25
32
点评:本题主要考查了二次函数的性质、三角形相似等重要知识点,要注意要分Q的不同位置进行分类讨论,而在每种分类情况下又要根据不同的对应相似三角形进一步分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案