【题目】为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:
某市自来水销售价格表
类别 | 月用水量 (立方米) | 供水价格 (元/立方米) | 污水处理费 (元/立方米) | |
居民生活用水 | 阶梯一 | 0~18(含18) | 1.90 | 1.00 |
阶梯二 | 18~25(含25) | 2.85 | ||
阶梯三 | 25以上 | 5.70 |
(注:居民生活用水水价=供水价格+污水处理费)
(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.
(2)4月份小明家用水量为20立方米,应付水费为:
18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)
预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.
(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议
【答案】(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.
【解析】
试题
(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;
(2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);
(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超过24立方米.
试题解析:
(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;
(2)由题意可得:
小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);
(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:
18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,
∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴,y轴分别交于B,C两点,抛物线过点B,C.
(1)求b、c的值;
(2)若点D是抛物线在x轴下方图象上的动点,过点D作x轴的垂线,与直线BC相交于点E.当线段DE的长度最大时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是它的角平分线,G是AD上的一点,BG,CG分别平分∠ABC,∠ACB,GH⊥BC,垂足为H,
求证:(1)∠BGC=90°+∠BAC;
(2)∠1=∠2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑,两人的运动手环记录时间和步数如下:
出发 | 途中 | 结束 | |
时间 | |||
小莉的步数 | 1308 | 3183 | 8808 |
出发 | 途中 | 结束 | |
时间 | |||
爸爸的步数 | 2168 | 4168 |
(1)表格中表示的结束时间为 , ;
(2)小莉和她爸爸两人每步分别跑多少米?
(3)渡江胜利纪念馆到绿博园的路程是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
(1)求证:∠BDA=∠ECA.
(2)若m=,n=3,∠ABC=75°,求BD的长.
(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
(4)试探究线段BF,AE,EF三者之间的数量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).
(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求一次函数y=kx+b和y=的表达式;
(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;
(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC内一点D,点C是AE上一点,AD交BE于点P,射线DC交BE的延长线于点F,且∠ABD=∠ACD,∠PDB=∠PDC
(1)求证:AB=AC;
(2)若AB=3,AE=5,求的值;
(3)若,=m,则=_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com