在平面直角坐标系xOy中,抛物线()与y轴交于点A,其对称轴与x轴交于点B。
(1)求点A,B的坐标;
(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;
(3)若该抛物线在这一段位于直线l的上方,并且在这一段位于直线AB的下方,求该抛物线的解析式。
科目:初中数学 来源: 题型:解答题
如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y轴交于点C,顶点为D.
(1)求顶点D的坐标.(用含a的代数式表示);
(2)若△ACD的面积为3.
①求抛物线的解析式;
②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣1,0).
(1)求D点的坐标;
(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;
(3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).
(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知二次函数 (a、m为常数,且a¹0)。
(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;
(2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。
①当△ABC的面积等于1时,求a的值:
②当△ABC的面积与△ABD的面积相等时,求m的值。
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
y=ax+b与y=的图象,如图所示,则
A.a>0,b>0,c>0 | B.a<0,b<0,c<0 |
C.a<0,b>0,c>0 | D.a<0,b<0,c>0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com