【题目】如图是某斜拉桥引申出的部分平面图,AE,CD是两条拉索,其中拉索CD与水平桥面BE的夹角为72°,其底端与立柱AB底端的距离BD为4米,两条拉索顶端距离AC为2米,若要使拉索AE与水平桥面的夹角为35°,请计算拉索AE的长.(结果精确到0.1米)(参考数据:sin35°≈,cos35°≈,tan35°≈,sin72°≈,cos72°≈,tan72°≈)
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是BC边上的一点,连接AE交对角线BD于点F,将线段AE绕点A逆时针旋转90°,得到线段AG,连接EG,交对角线BD于点H,连接AH.
(1)根据题意补全图形;
(2)判断AH与EG的位置关系,并证明;
(3)若AB=2,设BE=x,BH=y,直接写出y关于x的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把三角形纸片放置在平面直角坐标系中,点(,),点在轴的正半轴上,且.
(1)如图①,求,的长及点的坐标;
(2)如图②,点是的中点,将△沿翻折得到△,
①求四边形的面积;
②求证:△是等腰三角形;
③求的长(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校有名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有_____人,其中选择类的人数有_____人;
(2)在扇形统计图中,求类对应的扇形圆心角的度数,并补全条形统计图;
(3)若将这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线的图象如图所示;
(1)直线与轴交点的坐标是_____、与轴交点的坐标______;
(2)将直线沿轴负半轴方向平移1个单位后得到直线,求直线与轴的交点的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形中,对角线、交于点,,,点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动时,另一个点也停止运动.连接,过点作,设运动时间为,
解答下列问题:
(1)当为何值时是等腰三角形?
(2)设五边形面积为,试确定与的函数关系式;
(3)在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由;
(4)在运动过程中,是否存在某一时刻使得平分,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校260名学生参加植树活动,要求每人植4~7棵,活动结束后,随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵,B:5棵,C:6棵,D:7棵,并将各类的人数绘制了扇形统计图(如图1)和条形统计图(如图2),请根据相关信息解答下列问题:
(1)图1中m的值为 ;
(2)补全图2,并求出抽查的20名学生每人植树量数据的众数、中位数;
(3)求抽查的20名学生平均每人的植树量(保留一位小数),并估计全校260名学生共植树多少棵?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=3,BC=2,∠DAB=60°,E在AB上,且AE=EB,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.
(1)求证:AE=DF;
(2)求证:AM⊥DF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com