精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2-kx+k-5.
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式;
(3)若(2)中的二次函数的图象与x轴交于A、B,与y轴交于点C;D是第四象限函数图象上的点,且OD⊥BC于H,求点D的坐标.
(1)证明:对于二次方程:x2-kx+k-5=0,
有△=(-k)2-4k+20=k2-4k+4+16=(k-2)2+16>0;
可得其必有两个不相等的根;
故无论k取何实数,此二次函数的图象与x轴都有两个交点.

(2)若此二次函数图象的对称轴为x=1,
则对称轴的方程为-
1
2
(-k)=1,k=2;
易得它的解析式为y=x2-2x-3.

(3)若函数解析式为y=x2-2x-3;
易得其与x轴的交点坐标为A(-1,0)B(3,0);
与y轴的交点C的坐标为(0,-3);
BC的解析式为:y=x-3;
设D的坐标为(x,x2-2x-3),由OD⊥BC,图象过(0,0),则OD的解析式为:y=-x,
易得x2-2x-3=-x;
故x=
13
+1
2

解可得D的坐标为(
13
+1
2
,-
13
+1
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图:正方形ABCO的边长为3,过A(0,3)点作直线AD交x轴于D点,且D点的坐标为(4,0),线段AD上有一动点,以每秒一个单位长度的速度移动.
(1)求直线AD的解析式;
(2)若动点从A点开始沿AD方向运动2.5秒时到达的位置为点P,求经过B、O、P三点的抛物线的解析式;
(3)若动点从A点开始沿AD方向运动到达的位置为点P1,过P1作P1E⊥x轴,垂足为E,设四边形BCEP1的面积为S,请问S是否有最大值?若有,请求出P点坐标和S的最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c的图象经过(1,0)和(0,3)两点,它的部分图象如下图.
(1)求b、c的值;
(2)写出当y>0时,x的取值范围;
(3)求y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的关系解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将腰长为
5
的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其中点A在y轴上,点B在抛物线y=ax2+ax-2上,点C的坐标为(-1,0).
(1)点A的坐标为______,点B的坐标为______;
(2)抛物线的关系式为______,其顶点坐标为______;
(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C′的位置.请判断点B′、C′是否在(2)中的抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),△AOB绕O点按逆时针方向旋转90°得到△COD.
(1)求C、D两点的坐标;
(2)求经过C、D、B三点的抛物线的解析式;
(3)设(2)中的抛物线的顶点为P,AB的中点为M,试判断△PMB是钝角三角形、直角三角形还是锐角三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某汽车制造公司计划生产A、B、C三种型号的汽车共80辆.并且公司在设计上要求,A、C两种型号之间按如图所示的函数关系生产.该公司投入资金不少于1212万元,但不超过1224万元,且所有资金全部用于生产这三种型号的汽车,三种型号的汽车生产成本和售价如下表:
ABC
成本(万元/辆)121518
售价(万元/辆)141822
设A种型号的汽车生产x辆;
(1)设C种型号的汽车生产y辆,求出y与x的函数关系式;
(2)该公司对这三种型号汽车有哪几种生产方案?
(3)设该公司卖车获得的利润W万元,求公司如何生产获得利润最大?
(4)根据市场调查,每辆A、B型号汽车的售价不会改变,每辆C型号汽车在不亏本的情况下售价将会降价a万元(a>0),且所生产的三种型号汽车可全部售出,该公司又将如何生产获得利润最大?(注:利润=售价-成本)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为10米.当x等于多少米时,窗户的透光面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件售价为x元(x为非负整数),则若要使每星期的利润最大且每星期的销量较大,x应为多少元?(  )
A.41B.42C.42.5D.43

查看答案和解析>>

同步练习册答案