精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.
(1)求∠M的度数;
(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;
(3)你发现了怎样的规律?试证明;
(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.

解:(1)∵∠B=(180°-∠A)=70°
∴∠M=20°

(2)同理得∠M=40°

(3)规律是:∠M的大小为∠A大小的一半,
证明:设∠A=α,
则有∠B=(180°-α)
∠M=90°-(180°-α)=α

(4)不成立,
此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.
分析:(1)根据等腰三角形的两个底角相等和直角三角形的关系,求出∠M=20°;
(2)直接用(1)中同样的方法可求得∠M=40°;
(3)用一般的式子把求∠M的过程写下来即为规律;
(4)根据等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半,可判断改为钝角不成立.
点评:本题考查线段垂直平分线的性质、直角三角形性质及等腰三角形的性质.一般要用到垂直平分线的性质的性质定理:线段垂直平分线上的点到线段两端的距离相等.从而结合图形找到这对相等的线段是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案