【题目】如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是( )
A.88°
B.92°
C.106°
D.136°
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线AB与y轴交于点,与x轴交于点B,,直线CD与y轴交于点D,与x轴交于点,,直线AB与直线CD交于点Q,E为直线CD上一动点,过点E作x轴的垂线,交直线AB于点M,交x轴于点N,连接AE、BE.
求直线AB、CD的解析式及点Q的坐标;
当E点运动到Q点的右侧,且的面积为时,在y轴上有一动点P,直线AB上有一动点R,当的周长最小时,求点P的坐标及周长的最小值.
在问的条件下,如图2将绕着点B逆时针旋转得到,使点M与点G重合,点N与点H重合,再将沿着直线AB平移,记平移中的为,在平移过程中,设直线与x轴交于点F,是否存在这样的点F,使得为等腰三角形?若存在,求出此时点F的坐标;若不存在,说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2.求证:∠3=∠ACB.
下面给出了部分证明过程和理由,请补全所有内容.
证明:∵CD⊥AB,FE⊥AB
∴∠BDC=∠BEF=90°( )
∴EF∥DC( )
∴∠2= ( )
又∵∠2=∠1(已知)
∴∠1= (等量代换)
∴DG∥BC( )
∴∠3=∠ACB(两直线平行,同位角相等)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2= (x>0)交于点C,过点C作CD⊥x轴,且OA=AD,则以下结论: ①当x>0时,y1随x的增大而增大,y2随x的增大而减小;
②k=4;
③当0<x<2时,y1<y2;
④如图,当x=4时,EF=4.
其中正确结论的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+=0,过C作CB⊥x轴于B.
(1)求三角形ABC的面积;
(2)如图②,若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,求∠AED的度数;
(3)在y轴上是否存在点P,使得三角形ACP和三角形ABC的面积相等?若存在,求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1 , x2 .
(1)求实数k的取值范围;
(2)是否存在实数k,使得x1·x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com