分析 过B作BE⊥OA于E,则∠BEO=90°,根据等边求出OB=OA=2,∠BOA=60°,根据旋转得出∠AOA′=105°,∠A′OB′=∠AOB=60°,求出∠AOB′=45°,解直角三角形求出B′E和OE即可.
解答 解:
过B作BE⊥OA于E,则∠BEO=90°,
∵△OAB是等边三角形,A(2,0),
∴OB=OA=2,∠BOA=60°,
∵等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,旋转角为105°,
∴∠AOA′=105°,∠A′OB′=∠AOB=60°,OB=OB′=2,
∴∠AOB′=105°-60°=45°,
在Rt△B′EO中,B′E=OE=$\frac{\sqrt{2}}{2}$OB′=$\sqrt{2}$,
即点B′的坐标为($\sqrt{2}$,-$\sqrt{2}$),
故答案为:($\sqrt{2}$,-$\sqrt{2}$).
点评 本题考查了等边三角形的性质,旋转的性质,解直角三角形的应用,能构造直角三角形是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (1+10%)m | B. | (1-10%)m | C. | $\frac{m}{1+10%}$ | D. | $\frac{m}{1-10%}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com