【题目】如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A. B. C. D.
【答案】B
【解析】分析: 作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(-4,5),得到A′(4,5),B(-4,0),D(-2,0),求出直线DA′的解析式为y=x+,即可得到结论.
详解: 作A关于y轴的对称点A′,连接A′D交y轴于E,
则此时,△ADE的周长最小,
∵四边形ABOC是矩形,
∴AC∥OB,AC=OB,
∵A的坐标为(4,5),
∴A′(4,5),B(4,0),
∵D是OB的中点,
∴D(2,0),
设直线DA′的解析式为y=kx+b,
∴,
∴,
∴直线DA′的解析式为y=x+,
当x=0时,y=,
∴E(0,),
故选B.
点睛: 此题主要考查轴对称最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.
科目:初中数学 来源: 题型:
【题目】根据下面给出的数轴,解答下面的问题:
(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A: ,B: ;
(2)观察数轴,与点A的距离为4的点表示的数是: ;
(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数 表示的点重合.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙O的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,且点为B,则PB的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y= (x<0)的图象与直线y= x+m相交于点A和点B.过点A作AE⊥x轴于点E,过点B作BF⊥y轴于点F,P为线段AB上的一点,连接PE、PF.若△PAE和△PBF的面积相等,且xP=﹣ ,xA﹣xB=﹣3,则k的值是( )
A. ﹣5 B. C. ﹣2 D. ﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11分)如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.
(1)如图①,求证:∠AFD=∠EBC;
(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;
(3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线的顶点为D(-1,3),与轴的交点A在点(-3,0)和(-2,0)间,以下结论:①;②;③;④其中正确的有()个.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人, = ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四钟活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数的图象恰好经过点 A′,B,则的值为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com