精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AB=4,AC=3,点D、E、F分别在边AB、BC、AC上,且四边形ADEF是菱形,连接BF交DE于点G,则EG的长为
36
49
36
49
分析:根据菱形的性质及相似三角形的判定方法可得到,与△BDE相似的三角形有△BAC;设菱形ADEF的边长为x,已证△BDE∽△BAC,根据相似三角形的对应边成比例即可求得菱形的边长;根据相似三角形的判定证明△BGE∽△BFC,再根据三角形的对应边对应成比例即可求得EG的长.
解答:解:∵四边形ADEF是菱形,
∴DE∥AF.
∴∠BDE=∠A.
∵∠ABC=∠DBE.
∴△BDE∽△BAC.
DE
CA
=
BD
AB

设菱形ADEF的边长为x,则有
x
3
=
4-x
4

解之得,x=
12
7

∴菱形边长为
12
7

∵四边形ADEF是菱形.
∴AC∥DE.
∴∠BGE=∠BFC.
∵∠GBE=∠FBC.
∴△BGE∽△BFC.
EG
CF
=
BE
BC

同理可得:
BD
BA
=
BE
BC

EG
CF
=
BD
BA

EG
3-
12
7
=
4-
12
7
4

∴EG=
36
49

故答案为:
36
49
点评:此题综合考查相似三角形的判定及性质和菱形性质的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案