精英家教网 > 初中数学 > 题目详情
如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.
15m

试题分析:先根据题意画出示意图,过点C作CE⊥AD于点E,设BE=x,则在RT△ACE中,可得出CE,利用等腰三角形的性质可得出BC,继而在RT△BCE中利用勾股定理可求出x的值,也可得出CE的长度.
过点C作CE⊥AD于点E

由题意得,AB=30m,∠CAD=30°,∠CBD=60°,
故可得∠ACB=∠CAB=30°,
即可得AB=BC=30m,
设BE=x,在Rt△BCE中,可得CE=x,
又∵BC2=BE2+CE2,即900=x2+3x2
解得:x=15,即可得CE=15m.
答:小丽自家门前的小河的宽度为15m.
点评:解答本题的关键是画出示意图,将实际问题转化为解直角三角形的问题,注意直角三角形的构造.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题8分)如图,在梯形ABCD中,AD//BCEAD的中点,BC=5,AD=12,梯形高为4,∠A =45°,PAD边上的动点.

(1)当PA的值为____________时,以点P、B、C、E为顶点的四边形为直角梯形;
(2)当PA的值为____________时,以点P、B、C、E为顶点的四边形为平行四边形;
(3)点PAD边上运动的过程中,以P、B、C、E为顶点的四边形能否构成菱形?如果能,求出PA长.如果不能,也请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

等腰三角形中,两腰和底的长分别是10和13,求三角形的三个内角的度数(精确到l′).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为迎接旅游节,某宾馆将总面积为6 000平方米的房屋装修改造成普通客房(每间26平方米)和高级客房(每间36平方米)共100间及其他功能用房若干间,要求客房面积不低于总面积的50%,又不超过总面积的60%  

(1)求最多能改造成普通客房多少间  
(2)在(1)的情况下,旅游节期间,普通客房以每间每天100元的价格全部租出,高级客房每天租出的间数y(间)与其价格x(元/间)之间的关系如图所示  试问:该宾馆一天的最高客房收入能达到12 000元吗?若能,求出此时高级客房的价格;若不能,请说明理由  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市为治理污水,需要铺设一段全长为的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,结果提前天完成这一任务,实际每天铺设多长管道?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,是一个数值转换机.若输入数为3,则输出数是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是    (    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在Rt△ABC中,∠C=90°,AB=5,BC=3,以AC所在的直线为轴旋转一周,所得圆锥的侧面积为
A.B.C.D.

查看答案和解析>>

同步练习册答案