精英家教网 > 初中数学 > 题目详情
如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.

【答案】分析:本题利用矩形面积公式建立函数关系式,A:利用函数关系式在已知函数值的情况下,求自变量的值,由于是实际问题,自变量的值也要受到限制.B:利用函数关系式求函数最大值.
解答:解:(1)由题意得:
y=x(30-3x),即y=-3x2+30x.

(2)当y=63时,-3x2+30x=63.
解此方程得x1=7,x2=3.
当x=7时,30-3x=9<10,符合题意;
当x=3时,30-3x=21>10,不符合题意,舍去;
∴当AB的长为7m时,花圃的面积为63m2

(3)能.
y=-3x2+30x=-3(x-5)2+75
而由题意:0<30-3x≤10,
≤x<10
又当x>5时,y随x的增大而减小,
∴当x=m时面积最大,最大面积为m2
点评:根据题目的条件,合理地建立函数关系式,会判别函数关系式的类别,从而利用这种函数的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道精英家教网篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃一边AB的长为xm.如要围成面积为63m2的花圃,那么AB的长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有长为30m的篱笆,一面利用墙围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2
(1)求y与x的函数关系式;
(2)如果墙的最大可用长度为10m,要围成面积为63m2的花圃,AB的长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分10分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于)的矩形花圃,设花圃一边的长为m,面积为

(1)求的函数关系式;

(2)如果要围成面积为的花圃,的长是多少?

(3)能围成面积比更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2010年安徽省芜湖市初中毕业学业考试模拟试卷(一)数学卷 题型:解答题

(本小题满分10分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于)的矩形花圃,设花圃一边的长为m,面积为
(1)求的函数关系式;
(2)如果要围成面积为的花圃,的长是多少?
(3)能围成面积比更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案