精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x -1 0 1 2 3 4
y 10 5 2 1 2 5
(1)求该二次函数的关系式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.
分析:(1)从表格中取出2组解,利用待定系数法求解析式;
(2)利用顶点坐标求最值;
(3)利用二次函数的单调性比较大小.
解答:解:(1)根据题意,
当x=0时,y=5;
当x=1时,y=2;
5=c
2=1+b+c
,解得
b=-4
c=5

∴该二次函数关系式为y=x2-4x+5;

(2)∵y=x2-4x+5=(x-2)2+1,
∴当x=2时,y有最小值,最小值是1,

(3)∵A(m,y1),B(m+1,y2)两点都在函数y=x2-4x+5的图象上,
所以,y1=m2-4m+5,
y2=(m+1)2-4(m+1)+5=m2-2m+2,
y2-y1=(m2-2m+2)-(m2-4m+5)=2m-3,
∴①当2m-3<0,即m<
3
2
时,y1>y2
②当2m-3=0,即m=
3
2
时,y1=y2
③当2m-3>0,即m>
3
2
时,y1<y2
点评:主要考查了用待定系数法求二次函数的解析式和二次函数的最值的求法即其性质.渗透分类讨论思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案