【题目】根据下面图形,解答问题:
(1)在△ABC中,AB=AC,∠BAC=100°,DE、FG分别是边AB、AC的垂直平分线(如图1),求∠DAG的度数?
(2)在(1)中,若去掉“AB=AC”的条件,其余条件不变(如图2),还能求出∠DAG的度数吗?若能,请求出∠DAG的度数;若不能,请说明理由;
(3)在(图2)的情况下试探索△ADG的周长与BC长的关系?
【答案】(1)20°;(2)能,∠DAG=20°,理由见解析;(3)AD+DG+AG=BC.
【解析】
(1)利用线段垂直平分线的性质求出∠BAM+∠NAC=80°,∠BAC=100°,易求解;
(2)利用线段垂直平分线的性质求出∠BAM+∠NAC=80°,∠BAC=100°,求出即可;
(3)根据等腰三角形的性质即可得到结论.
(1)∵DE垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理:GA=GC,∠C=∠GAC,
∵∠B+∠C+∠BAC=180°,∠BAC=100°,
∴∠B+∠C=80°,
∴∠BAD+∠GAC=80°,
∴∠DAG=∠BAC-(∠BAD+∠GAC)=100°-80°=20°;
(2)能,∠DAG=20°;
理由是:∵DE垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理:GA=GC,∠C=∠GAC,
∵∠B+∠C+∠BAC=180°,∠BAC=100°,
∴∠B+∠C=80°,
∴∠BAD+∠GAC=80°,
∴∠DAG=∠BAC-(∠BAD+∠GAC)=100°-80°=20°;
(3)由(2)知,AD=BD,AG=GC,
∴AD+DG+AG=BD+DG+GC=BC.
科目:初中数学 来源: 题型:
【题目】同学们知道数学中的整体思想吗?在解决某些问题时,常常需要运用整体的方式对问题进行处理,如:整体思考、整体变形、把一个式子看作整体等,这样可以使问题简化并迅速求解.试运用整体的数学思想方法解决下列问题:
(1)把下列各式分解因式:
① ②
(2)①已知则的值为 .
②已知那么 .
③已知求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个袋子中装有大小相同的个小球,其中个蓝色,个红色.
从袋中随机摸出个,求摸到的是蓝色小球的概率;
从袋中随机摸出个,用列表法或树状图法求摸到的都是红色小球的概率;
在这个袋中加入个红色小球,进行如下试验:随机摸出个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在,则可以推算出的值大约是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边三角形ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,有下列结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△ADE的周长是9.其中,正确结论的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2016的坐标为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料
在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,使于观察如何进行因式分解我们把这种因式分解的方法称为“换元 法”.下面是小涵同学用换元法对多项式(x+4x+1)(x+4x+7)+9 进行因式分解的过程.
解:设 x+4x=y
原式=(y+1)(y+7)+9 (第一步)
=y+8y+16 (第二步)
=(y+4) (第三步)
=(x+4x+4) (第四步)
请根据上述材料回答下列问题:
(1)小涵同学的解法中,第二步到第三步运用了因式分解的 .
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: .
(3)请你用换元法对多项式(x-2x)(x-2x+2)+1 进行因式分解
(4)当 x= 时,多项式(x-2x)(x-2x+2)-1 存在最 值(填“大”或“小”).请你求出这 个最值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm 的是( )
A. 2秒钟 B. 3秒钟 C. 4秒钟 D. 5秒钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率.
(2)你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com