精英家教网 > 初中数学 > 题目详情
18.如图,在正方形ABCD的外侧,作等边三角形CDE,则∠AED的度数为15°.

分析 由于四边形ABCD是正方形,△DCE是正三角形,由此可以得到AD=DE,接着利用正方形和正三角形的内角的性质即可求解.

解答 解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,
又∵△DCE是正三角形,
∴DE=AD,∠EDC=60°,
∴△ADE是等腰三角形,∠ADE=90°+60°=150°,
∴∠AED=15°.
故答案为:15°.

点评 此题主要考查了正方形和等边三角形的性质,同时也利用了三角形的内角和,解题首先利用正方形和等边三角形的性质证明等腰三角形,然后利用等腰三角形的性质即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,在△ABC中,AB=AC=2,∠ABC=30°,点P、Q分别在边AB、AC上,将△APQ沿PQ翻折,点A落到点A′处,则线段BA′长度的最小值是(  )
A.2$\sqrt{3}$-2B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,点E是矩形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F,DE=DF.求证:矩形ABCD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图是“明清影视城”的圆弧形门,这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BD=200cm,且AB,CD与水平地面都是垂直的.则这个圆弧形门的最高点离地面的高度是520 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,求PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读材料:若m2-2mn+2n2-2n+1=0,求m、n的值.
解:∵m2-2mn+2n2-2n+1=0,∴(m2-2mn+n2)+(n2-2n+1)=0
∴(m-n)2+(n-1)2=0,∴(m-n)2=0,(n-1)2=0,∴n=1,m=1.
根据你的观察,探究下面的问题:
(1)已知x2+2xy+2y2+2y+1=0,求x、y的值;
(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b-52,且△ABC是等腰三角形,求c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,等边△ABC的高AH等于$\sqrt{3}$,那么该三角形的面积为(  )
A.$\sqrt{3}$B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知:直线y=-x-4分别交x、y轴于A、C两点,抛物线y=ax2+bx(a>0)经过A、O两点,且顶点B的纵坐标为-2
(1)判断点B是否在直线AC上,并求该抛物线的函数关系式;
(2)以点B关于x轴的对称点D为圆心,以OD为半径作⊙D,试判断直线AC与⊙D的位置关系,并说明理由;
(3)若E为⊙D的优弧AO上一动点(不与A、O重合),连结AE、OE,问在抛物线上是否存在点P,使∠POA:∠AEO=2:3?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,直线y=x+4和抛物线y=ax2+bx+12(a≠0)相交于A(1,5)和B(8,n),点P是线段AB上异于A,B的动点,过点P作PC⊥x轴,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的点P,使△ABC的面积有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)当以线段PC为直径的圆经过点A时,求点P的坐标.

查看答案和解析>>

同步练习册答案