精英家教网 > 初中数学 > 题目详情
20.如图所示,从热气球C上测定建筑物A、B底部的俯角分别为30°和60°,已知AB间的距离为180米,CD垂直于AB于点D.问:此时热气球的高度为多少?

分析 设CD=x米,根据正切的定义用x分别表示出AD、BD,根据题意列出算式,根据二次根式的性质计算即可.

解答 解:设CD=x米,
由题意得,∠A=30°,∠B=60°,
则AD=$\frac{CD}{tan∠A}$=$\sqrt{3}$x,BD=$\frac{CD}{tan∠B}$=$\frac{\sqrt{3}}{3}$x,
∵AD+DB=AB,
∴$\sqrt{3}$x+$\frac{\sqrt{3}}{3}$x=180,
解得x=45$\sqrt{3}$,
答:此时热气球的高度为45$\sqrt{3}$米.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.小明抛掷一枚质地均匀的硬币9次,有6次正面向上,则第10次抛掷这个硬币,背面向上的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,AB是⊙O的直径,AB=2,CD与⊙O相切于点D,∠DAB=60°,点E在切线CD上,则当∠AEB最大时,AE=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在同一直角坐标系中,画出函数y=-$\frac{1}{2}$x2,y=-$\frac{1}{2}$x2-1,y=-$\frac{1}{2}$(x+1)2-1的图象,并列表比较这三条抛物线的对称轴、顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知一次函数y=ax+b的图象与反比例函数y=$\frac{k}{x}$的图象交于A(2,2),B(-1,m)
(1)求一次函数和反比例函数的解析式;
(2)在给定的直角坐标系中,画出这两个函数的图象;
(3)当x为何值时,一次函数的值大于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在矩形ABCD中,E为线段BC上一点,点B关于AE的对称点为F,连接AF,G为BC延长线上一点,且DG=DA,射线EF交射线GD于点P.
(1)如图1,当点P在线段GD上时,求证:PF=CG+DP;
(2)如图2,当点P在线段GD的延长线上时,直接写出线段PF、CG、DP之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,M,N是正方形ABCD的边BC上两个动点,满足BM=CN,连结AC交DN于点P,连结AM交BP于点Q,若正方形的边长为1,则线段CQ的最小值是$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,四边形ABCD内接于⊙O,对角线AC经过圆心O.且交BD于点E,BO⊥AD于点H,OA=AD=2,则OE:EC值是(  )
A.1:2B.1:$\sqrt{2}$C.1:$\sqrt{3}$D.$\sqrt{2}$:$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.公式:(x+y+z)2=x2+y2+z2+2(xy+yz+xz).若现有三实数a、b、c,满足a+b+c=0,abc=6,则$\frac{1}{a}$$+\frac{1}{b}$$+\frac{1}{c}$为(  )
A.正数B.负数C.D.非负数

查看答案和解析>>

同步练习册答案