【题目】如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上, 顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C运动的路径长为__ _.
【答案】.
【解析】因为正方形的边长为2,圆的半径为2,正方形ABCD沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,正方形总共转动了6次,点C运动的路径是以AC为半径,旋转两次的弧长和以正方形的边长为半径旋转3次的弧长的和(还有一次点C在圆上,为旋转直中心),
如图,分别连接OA、OB、OD′、OC、OC′;
∵OA=OB=AB,
∴△OAB是等边三角形,
∴∠OAB=60°;
同理可证:∠OAD′=60°,
∴∠D′AB=120°;
∵∠D′AB′=90°,
∴∠BAB′=120°-90°=30°,
由旋转变换的性质可知∠C′AC=∠B′AB=30°;
∵四边形ABCD为正方形,且边长为2,
∴∠ABC=90°,AC= ,
∴当点D第一次落在圆上时,点C运动的路线长为:.
由上面的计算过程可知,每次的旋转角都为30°,
所以,点C运动的路径为:.
科目:初中数学 来源: 题型:
【题目】如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D.
(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下关于0的说法:①0的相反数与0的绝对值都是0;②0的倒数是0;③0减去一个数,等于这个数的相反数;④0除以任何有理数仍得0.其中说法正确的有( )个
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com