精英家教网 > 初中数学 > 题目详情

已知:如图,在矩形ABCD中,BE=DF.求证:AF=CE.

证明∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,
∵BE=DF,
∴AE=CF,AE∥CF,
∴四边形AECF是平行四边形.
∴AF=CE.
分析:根据矩形的性质可知AB∥CD,AB=CD,由已知条件证明AE=CF,AE∥CF,从而证明四边形AECF是平行四边形,由平行四边形的性质可知AF=CE.
点评:本题考查了矩形的性质、平行四边形的判定和性质,属于基础题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,在矩形ABCD中,P是边AD上的动点,PE垂直AC于E,PF垂直BD于F,如果AB=3,AD=4,那么(  )
A、PE+PF=
12
5
B、
12
5
<PE+PF<
13
5
C、PE+PF=5
D、3<PE+PF<4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,在矩形ABCD中,M是边BC的中点,AB=3,BC=4,⊙D与直线AM相切于点E,
求⊙D的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.
(1)若AP=
5
,AB=
1
3
BC,求矩形ABCD的面积;
(2)若CD=PM,求证:AC=AP+PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,AB=4,AD=10,F是AD上一点,CF⊥EF于点F交AB于点E,
DC
CF
=
1
2
.求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F,请你判断BE与CF的大小关系,并说明你的理由.

查看答案和解析>>

同步练习册答案