精英家教网 > 初中数学 > 题目详情
23、已知△ABC,分别以AB、BC、CA为边向形外作等边三角形ABD、等边三角形BCE、等边三角形ACF.
(1)如图,当△ABC是等边三角形时,请你写出满足图中条件,四个成立的结论;
(2)如图,当△ABC中只有∠ACB=60°时,请你证明S△ABC与S△ABD的和等于S△BCE与S△ACF的和.
分析:(1)由等边三角形的性质可写出结论.
(2)要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.
解答:解:(1)DE=EF,DF=EF,∠D=∠E=∠F,A、B、C分别为DF、DE、EF的中点.
(2)过A作AM∥FC交BC于M,连接DM、EM,
∵∠ACB=60°,∠CAF=60°,
∴∠ACB=∠CAF.
∴AF∥MC.
∴四边形AMCF是平行四边形.
又∵FA=FC,
∴四边形AMCF是菱形.
∴AC=CM=AM,且∠MAC=60°.
∵在△BAC与△EMC中,
CA=CM,∠ACB=∠MCE,CB=CE,
∴△BAC≌△EMC.
∴DM=BC.
∴DM=EB,DB=EM.
∴四边形DBEM是平行四边形.
∴S△BDM+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF
即S△ABC+S△ABD=S△BCE+S△ACF
点评:本题主要考查等边三角形的性质及平行四边的判定和全等三角形的判定,难度很大,有利于培养同学们钻研和探索问题的精神.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知△ABC,分别以AB,AC为边,向形外作等边三角形ABD和ACE,连接BE,DC,其中,则△ADC≌△ABE的根据是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知△ABC,分别以BC、AC为边向形外作正方形BDEC,正方形ACFG,过C点的直线MN垂直于AB于N,交EF于M,
(1)当∠ACB=90°时,试证明:①EF=AB;②M为EF的中点;

(2)当∠ACB为锐角或钝角时,①EF与AB的数量关系为
当∠ACB为锐角时,EF>AB,当∠ACB为钝角时,EF<AB
(分情况说明);
②M还是EF的中点吗?请说明理由.(选择当∠ACB为锐角或钝角时的一种情况来说明)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•博野县模拟)阅读下面材料:
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.

小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).
请你回答:图2中△BCE的面积等于
2
2

请你尝试用平移、旋转、翻折的方法,解决下列问题:
如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.
(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•南开区一模)阅读下面材料:小明遇到这样一个问题:如图1,△ABO和△CBO均为等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构成一个三角形,在计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而等到的△BCE即时以AD、BC、OC+OD的长度为三边长的三角形(如图2).
(I)请你回答:图2中△BCE的面积等于
2
2

(II)请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

同步练习册答案