分析 (1)利用因式分解法解方程;
(2)利用因式分解法解方程;
(3)利用因式分解法解方程;
(4)利用配方法得到(x+1)2=$\frac{5}{4}$,然后利用直接开平方法解方程.
解答 解:(1)x(x-1)=0,
x=0或x-1=0,
所以x1=0,x2=1;
(2)(2x-1)2=0,
2x-1=0,
所以x1=x2=$\frac{1}{2}$;
(3)(x-4)(x+1)=0,
x-4=0或x+1=0,
所以x1=4,x2=-1;
(4)x2+2x=$\frac{1}{4}$,
x2+2x+1=$\frac{1}{4}$+1,
(x+1)2=$\frac{5}{4}$,
x+1=±$\frac{\sqrt{5}}{2}$,
所以x1=-1+$\frac{\sqrt{5}}{2}$,x2=-1-$\frac{\sqrt{5}}{2}$.
点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{3}{x}$+$\frac{1}{3}$=$\frac{3}{2x}$ | B. | $\frac{3}{x}$+20=$\frac{3}{2x}$ | C. | $\frac{3}{x}$-$\frac{1}{3}$=$\frac{3}{2x}$ | D. | $\frac{3}{x}$-20=$\frac{3}{2x}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com