精英家教网 > 初中数学 > 题目详情

如图所示,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连接AC,与DE交于点P.问EP与PD是否相等?证明你的结论.

解:DP=PE.证明如下:
∵AB是⊙O的直径,BC是切线,
∴AB⊥BC.
∴DE∥BC,
∴Rt△AEP∽Rt△ABC,得.①
又∵AD∥OC,∴∠DAE=∠COB,
∴Rt△AED∽Rt△OBC.

由①,②得ED=2EP.
∴DP=PE.
分析:解答此题的关键是利用AB是⊙O的直径,BC是切线,求证Rt△AEP∽Rt△ABC和Rt△AED∽Rt△OBC,然后利用其对应边成比例即可得出结论.
点评:此题主要考查学生对相似三角形的判定与性质和切线的判定与性质的理解和掌握,此题的关键是求证Rt△AEP∽Rt△ABC,Rt△AED∽Rt△OBC,此题属于中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=
103
.判断直线DE与半圆O的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB是半圆O的直径,弦CD∥AB,AB=10,CD=6,E是AB延长线上一点,BE=
10
3

(1)求
OD
OE

(2)证明:直线DE是半圆O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB是⊙O的直径,直线L与⊙O相切于点C,
AC
=
AD
,CD交AB于E,BF⊥直线L,垂足精英家教网为F,BF交⊙O于C.
(1)图中哪条线段与AE相等?试证明你的结论;
(2)若sin∠CBF=
5
5
,AE=4,求AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于点E,连接AC,与DE交于点P.问EP与PD是否相等?证明你的结论.

查看答案和解析>>

同步练习册答案