精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.

【答案】分析:(1)根据垂径定理和圆周角定理及其推论进行分析,得到结论;
(2)连接OC,阴影部分的面积即是扇形OAC的面积减去三角形AOC的面积.根据圆周角定理发现30°的直角三角形ABC,从而得到扇形所在的圆心角的度数以及半径的长,再根据扇形的面积公式和三角形的面积公式计算.
解答:解:(1)答案不唯一,只要合理均可.例如:
①BC=BD;②OF∥BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC2=BE•AB;
⑥BC2=CE2+BE2;⑦△ABC是直角三角形;⑧△BCD是等腰三角形.

(2)连接OC,则OC=OA=OB,
∵∠D=30°,=
∴∠A=∠D=30°,
∴∠COB=2∠A=60°
∴∠AOC=120度,
∵AB为⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,BC=1,
∴AB=2,AC=
∵OF⊥AC,
∴AF=CF,
∵OA=OB,
∴OF是△ABC的中位线,
∴OF=BC=
∴S△AOC=AC•OF=××=
S扇形AOC=π×OA2=
∴S阴影=S扇形AOC-S△AOC=
点评:要熟练运用垂径定理、圆周角定理及其推论、等弧对等弦以及30°的直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为
40m
40m

查看答案和解析>>

科目:初中数学 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:013

如图,AB为⊙O的直甲径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中数学 来源:2008年福建省福州一中高中招生(面向福州以外)综合素质测试数学试卷(解析版) 题型:选择题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步练习册答案