【题目】已知关于的一元二次方程.
(1)试证明:无论取何值此方程总有两个实数根;
(2)若原方程的两根,满足,求的值.
【答案】(1)证明见解析;(2)-2.
【解析】(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;
(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.
(1)证明:原方程可变形为x2-5x+6-p2-p=0.
∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥0,
∴无论p取何值此方程总有两个实数根;
(2)∵原方程的两根为x1、x2,
∴x1+x2=5,x1x2=6-p2-p.
又∵x12+x22-x1x2=3p2+1,
∴(x1+x2)2-3x1x2=3p2+1,
∴52-3(6-p2-p)=3p2+1,
∴25-18+3p2+3p=3p2+1,
∴3p=-6,
∴p=-2.
科目:初中数学 来源: 题型:
【题目】如图,C 是路段 AB 的中点,两人从 C 同时出发,以相同的速度分别沿两条直线行走,并同时到达 D,E 两地,DA⊥AB,EB⊥AB,D,E 与路段AB 的距离相等吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在关于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.
(1)求直线OA和二次函数的解析式;
(2)当点P在直线OA的上方时,
①当PC的长最大时,求点P的坐标;
②当S△PCO=S△CDO时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC=4cm,点D是斜边AB的中点,点E从点B出发以1cm/s的速度向点C运动,点F同时从点C出发以一定的速度沿射线CA方向运动,规定:当点E到终点C时停止运动;设运动的时间为x秒,连接DE、DF.
(1)填空:S△ABC= cm2;
(2)当x=1且点F运动的速度也是1cm/s时,求证:DE=DF;
(3)若动点F以3cm/s的速度沿射线CA方向运动;在点E、点F运动过程中,如果有某个时间x,使得△ADF的面积与△BDE的面积存在两倍关系,请你直接写出时间x的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点分别为A(0,3),B(﹣4,0),C(2,0),且△BCD与△ABC全等,则点D坐标可以是( )
A.(﹣2,﹣3)B.(2,﹣3)C.(2,3)D.(0,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题
阅读下列材料:
配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程,则,∴
求、.则有,∴.解得,.则有,∴.解得或,根据以上材料解答下列各题:
若.求的值.
.求的值.
若.求的值.
若,,表示的三边,且,试判断的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM,下列结论:①AE=AF;②DF=DN;③AE=CN;④△AMD和△DMN的面积相等,其中错误的结论个数是( )
A.3个B.2个C.1个D.0个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com