分析 (1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠2+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;
(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.
解答 证明:(1)如图1,连接BI,
∵I是△ABC的内心,
∴∠1=∠2,∠3=∠4,
∵∠BIE=∠1+∠3,
∠IBE=∠5+∠4,
而∠5=∠1=∠2,
∴∠BIE=∠IBE,
∴IE=BE.
(2)四边形BECI是菱形,
如图2∵∠BED=∠CED=60°,
∴∠ABC=∠ACB=60°,
∴BE=CE,
∵I是△ABC的内心,
∴∠4=$\frac{1}{2}$∠ABC=30°,∠ICD=30°,
∴∠4=∠ICD,
∴BI=IC,
由(1)证得IE=BE,
∴BE=CE=BI=IC,
∴四边形BECI是菱形.
点评 本题考查了三角形的内心的性质,以及圆周角定理,正确求得∠EIC的度数是关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com