精英家教网 > 初中数学 > 题目详情
5.如图,BE是△ABC的角平分线,点D是AB边上一点,且∠DEB=∠DBE.
(1)DE与BC平行吗?为什么?
(2)若∠A=40°,∠ADE=60°,求∠C的度数.

分析 (1)根据角平分线的定义可得∠DBE=∠EBC,从而求出∠DEB=∠EBC,再利用内错角相等,两直线平行证明即可;
(2)根据两直线平行,同位角相等可得∠ABC=∠ADE,再利用三角形的内角和等于180°列式计算即可得解.

解答 解:(1)DE∥BC.
理由如下:∵BE是△ABC的角平分线,
∴∠DBE=∠EBC,
∵∠DEB=∠DBE,
∴∠DEB=∠EBC,
∴DE∥BC;

(2)∵DE∥BC,
∴∠ABC=∠ADE,
∵∠ADE=60°,
∴∠ABC=60°,
在△ABC中,∠A+∠ABC+∠C=180°,
∴∠C=180°-∠A-∠ABC=180°-40°-60°=80°.

点评 本题考查了三角形的内角和定理,平行线的判定与性质,准确识别图形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.计算:4sin45°-2tan30°cos30°+tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简($\frac{2}{a+1}$+$\frac{a+2}{{a}^{2}-1}$)÷$\frac{a}{a+1}$,然后从-$\sqrt{5}$<a<$\sqrt{5}$的范围内选取一个合适的整数作为a的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先化简,再求值:
4x2y-[6xy-2(4xy-2)-2x2y]+xy,其中x=-$\frac{1}{2}$,y=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若4x2-kx+9(k为常数)是完全平方式,则k=±12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.小王计划租一间商铺,下面是某房屋中介提供的两种商铺的出租信息:

设租期为x(月),所需租金为y(元),其中x为大于1的整数.
(1)若小王计划租用的商铺为90m2,请分别写出在商座A,B租商铺所需租金yA(元),yB(元)与租期x(月)之间的函数关系式;
(2)在(1)的前提下,请你帮助小王分析:根据租期,租用哪个商座的商铺房租更低.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.因式分解:
(1)20a-15ab
(2)x2-12x+36
(3)-a2+1
(4)2a(b-c)2-3b+3c.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.南京规划地铁6号线由栖霞山站开往南京南站,全长32100米,这个数据用科学记数法表示为(  )
A.321×102B.32.1×103C.3.21×104D.3.21×105

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.
(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.
(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?

查看答案和解析>>

同步练习册答案