分析 (1)根据角平分线的定义可得∠DBE=∠EBC,从而求出∠DEB=∠EBC,再利用内错角相等,两直线平行证明即可;
(2)根据两直线平行,同位角相等可得∠ABC=∠ADE,再利用三角形的内角和等于180°列式计算即可得解.
解答 解:(1)DE∥BC.
理由如下:∵BE是△ABC的角平分线,
∴∠DBE=∠EBC,
∵∠DEB=∠DBE,
∴∠DEB=∠EBC,
∴DE∥BC;
(2)∵DE∥BC,
∴∠ABC=∠ADE,
∵∠ADE=60°,
∴∠ABC=60°,
在△ABC中,∠A+∠ABC+∠C=180°,
∴∠C=180°-∠A-∠ABC=180°-40°-60°=80°.
点评 本题考查了三角形的内角和定理,平行线的判定与性质,准确识别图形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 321×102 | B. | 32.1×103 | C. | 3.21×104 | D. | 3.21×105 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com