精英家教网 > 初中数学 > 题目详情
如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.
∵CD切⊙O于点D,
∴∠ODC=90°;
又∵OA⊥OC,即∠AOc=90°,
∴∠A+∠AEO=90°,∠ADO+∠ADC=90°;
∵OA=OD,
∴∠A=∠ADO,
∴∠ADC=∠AEO;
又∵∠AEO=∠DEC,
∴∠DEC=∠ADC,
∴CD=CE,
∵CE=5,
∴CD=5.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,巳知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=
3
,则线段BC的长度等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是⊙O上一点,∠CAB=30°,在AB的延长线上取一点P,使得PB=
1
2
AB,试判断直线PC与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图甲,已知AB是⊙O的直径,直线l与⊙O相切于点B,直线m垂直AB于点C,交⊙O于P、Q两点.连接AP,过O作ODAP交l于点D,连接AD与m交于点M.
(1)如图乙,当直线m过点O时,求证:M是PO的中点;
(2)如图甲,当直线m不过点O时,M是否仍为PC的中点?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若BD=2,DC=4,求AE和BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知PA、PB切⊙O于A、B两点,连AB,且PA,PB的长是方程x2-2mx+3=0的两根,AB=m.试求:
(1)⊙O的半径;
(2)由PA,PB,
AB
围成图形(即阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦ADOC,弦DF⊥AB于点G.
(1)求证:点E是
BD
的中点;
(2)求证:CD是⊙O的切线;
(3)若sin∠BAD=
4
5
,⊙O的半径为5,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有人请泰克地毯公司为某新建机场的环形通道铺设地毯.当泰克先生拿到计划蓝图(如图)时,他有些生气:与内圆相切的一条弦的长度是唯一给出的尺寸数据.“这就难了,”泰克想,“两圆之间环形阴影的面积不知道,怎么能估计出大致需要多少地毯呢?最好去找找设计师萨普先生.”萨普先生是个优秀的几何学家,他对此倒是处之泰然:“对我来说,有这一个数据就够了,把这个数据代入公式就能求出圆环的面积.”泰克先生吃了一惊,略一思索,便现出了笑容:“谢谢你,萨普先生,无须劳驾你动用什么公式了,我可以马上得出答案.”你知道泰克先生是怎么算的吗?

查看答案和解析>>

同步练习册答案