精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AB=4BC=5∠ABC=60° 按以下步骤作图:C为圆心,以适当长为半径做弧,交CBCDMN两点;分别以MN为圆心,以大于MN的长为半径作弧,两弧相交于点E,作射线CEBD于点O,交AD边于点F;则BO的长度为(  )

A.B.C.D.

【答案】C

【解析】

如图(见解析),过点D的延长线,垂足为G,先根据作图过程得出CF的角平分线,从而可得,再根据平行四边形的性质、平行线的性质可得,然后利用等腰三角形的性质、直角三角形的性质得出,最后根据相似三角形的判定与性质即可得.

如图,过点D的延长线,垂足为G

由作图过程可知,CF的角平分线

四边形ABCD是平行四边形

,

中,

中,

,即

解得

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P为等腰△ABC内一点,AB=BC∠BPC=108°DAC中点,BDPC相交于点E,已知P△ABE的内心.

1)求证:∠PEB=60°

2)求∠PAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC10,点D是边BC上一动点(不与BC重合)ADEBαDEAC于点E,且cosα.下列结论:①△ADE∽△ACDBD6时,ABDDCE全等;③△DCE为直角三角形时,BD80CE≤6.4.其中正确的结论是______________.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店准备购进两种商品,种商品毎件的进价比种商品每件的进价多20元,用3000元购进种商品和用1800元购进种商品的数量相同.商店将种商品每件的售价定为80元,种商品每件的售价定为45元.

1种商品每件的进价和种商品每件的进价各是多少元?

2)商店计划用不超过1560元的资金购进两种商品共40件,其中种商品的数量不低于种商品数量的一半,该商店有几种进货方案?

3)端午节期间,商店开展优惠促销活动,决定对每件种商品售价优惠)元,种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一块含30°角的三角板的直角顶点放在反比例函数y=-x0)的图象上的点C处,另两个顶点分别落在原点Ox轴的负半轴上的点A处,且∠CAO=30°,则AC边与该函数图象的另一交点D的坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学疫情期间为了切实抓好停课不停学活动,借助某软件平台随机抽取了该校部分学生的在线学习时间,并将结果绘制成如下两幅不完整的统计图.

请你根据以上信息回答下列问题

1)本次调查的人数为   学习时间为7小时的所对的圆心角为

2)补全频数分布直方图;

3)若全校共有学生1800人,估计有多少学生在线学习时间不低于8个小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020324日,工信部发布《关于推动加快发展的通知》,全力推进网络建设、应用推广、技术发展和安全保障.工信部提出,要培育新型消费模式,加快用户向迁移,推动“医疗健康创新发展,实施“工业互联网”512工程,促进“车联网”协同发展,构建应用生态系统.现“网络”已成为一个热门词汇,某校为了解九年级学生对“网络”的了解程度,对九年级学生行了一次测试(一共10道题答对1道得1分,满分10),测试结束后随机抽取了部分学生的成绩整理分析,绘制出如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:

1)请补全条形统计图,扇形统计图中    __

2)所调查学生成绩的众数是_    ____分,平均数是_    分;

3)若该校九年级学生有人,请估计得分不少于分的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.

1)求甲、乙两队单独完成此项工程各需多少天?

2)求甲、乙两队单独完成此项工程各需多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c与一直线相交于A(10)C(23)两点,与y轴交于点N.其顶点为D

1)抛物线及直线AC的函数关系式;

2)若抛物线的对称轴与直线AC相交于点BE为直线AC上的任意一点,过点EEFBD交抛物线于点F,以BDEF为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;

3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

查看答案和解析>>

同步练习册答案