精英家教网 > 初中数学 > 题目详情
如图,一艘船以每小时30海里的速度向东北方向航行,在A处观测灯塔S在船的北偏东75°的方向,航行12分钟后到达B处,这时灯塔S恰好在船的正东方向.已知距离此灯塔8海里以外的海区为航行安全区域,这艘船可以继续沿东北方向航行吗?为什么?(参考数据:≈1.41,≈1.73)

【答案】分析:问这艘船能否可以继续沿东北方向航行,只要证明D与S的距离要大于8海里,可以做与正北方向平行的直线,与SB的延长线相交于点C.则△ABC,△ACS都是直角三角形,可以运用勾股定理来计算.
解答:解:作与正北方向平行的直线,与SB的延长线相交于点C,过点S作SD⊥AB于D.
∵AB=30×=6(海里),
∵∠CAB=45°,∠ACB=90°,
∴AC=BC=AB•sin45°=6×=3(海里),
∵∠CAS=75°,∠ACS=90°,
∴SC=AC•tan75°=3×(2+)=6+3(海里),
∴BS=3+3(海里),
∵∠DBS=∠ABC=45°,
∴SD=BS•sin45°=(3+3)×=3+3≈8.2>8,
∴这艘船可以继续沿东北方向航行.
点评:此题考查的是对直角三角形勾股定理的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一艘船以每小时30海里的速度向东北方向航行,在A处观测灯塔S在船的北偏东75°的方向,航行12分钟后到达B处,这时灯塔S恰好在船的正东方向.已知距离此灯塔8海里以外的海区为航行安全区域,这艘精英家教网船可以继续沿东北方向航行吗?为什么?(参考数据:
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,一艘船以每小时60海里的速度自A向正北方向航行,船在A处时,灯塔S在船的北偏东30°,航行1小时后到B处,此时灯塔S在船的北偏东75°,(运算结果保留根号)
(1)求船在B处时与灯塔S的距离;
(2)若船从B处继续向正北方向航行,问经过多长时间船与灯塔S的距离最近.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一艘船以每小时40海里的速度向西南方向航行,在A处观测灯塔M在船的南偏西75°的方向,航行9分钟后到达B处,这时灯塔M恰好在船的正西方向.已知距离此灯塔9海里以内的海区有暗礁,这艘船继续沿西南方向航行是否有触礁的危险?为什么?(参考数据:
2
≈1.41
3
≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青岛模拟)如图,一艘船以每小时36海里的速度向东北方向(北偏东45°)航行,在A处观测灯塔C在船的北偏东80°的方向,航行20分钟后到达B处,这时灯塔C恰好在船的正东方向.已知距离此灯塔25海里以外的海区为航行安全区域,这艘船是否可以继续沿东北方向航行?请说明理由.(参考数据:sin80°≈0.9,tan80°≈5.7,sin35°≈0.6,tan45°=1,cos35°≈0.8,tan35°≈0.7)

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市进化一中中考数学模拟试卷 题型:解答题

(2011四川泸州,25,7分)如图,一艘船以每小时60海里的速度自A向正北方向航行,船在A处时,灯塔S在船的北偏东30°,航行1小时后到B处,此时灯塔S在船的北偏东75°,(运算结果保留根号)
(1)求船在B处时与灯塔S的距离;
(2)若船从B处继续向正北方向航行,问经过多长时间船与灯塔S的距离最近.

查看答案和解析>>

同步练习册答案