精英家教网 > 初中数学 > 题目详情
如图是汽车在某高速公路上匀速行驶时,速度v(千米/时)与行驶时间t(小时)的函数图象,请根据图象提供的信息回答问题:汽车最慢用______小时可以到达.如果要在4小时内到达,汽车的速度应不低于______千米/时.
观察图象得汽车最慢用6小时可以到达,
设速度v(千米/时)与行驶时间t(小时)的函数解析式为v=
k
t

∵图象经过点(150,2),
∴k=150×2=300,
∴解析式为v=
300
t

当t=4时,v=75,
故答案为6,75.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,点P在双曲线y=
k
x
(k≠0)上,点P′(1,2)与点P关于y轴对称,则此双曲线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是坐标原点,正比例函数y=kx的图象与双曲线y=-
2
x
交于点A,且点A的横坐标为-
2

(1)求k的值.
(2)将直线y=kx向上平移4个单位得到直线BC,直线BC分别交x轴、y轴于点B、C,如点D在直线BC上,在平面直角坐标系中求一点P,使以O、B、D、P为顶点的四边形是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=ax+b的图象与反比例函数y=
k
x
的图象交于C,D两点,与坐标轴交于A、B两点,连结OC,OD(O是坐标原点).
(1)利用图中条件,求反比例函数的解析式和m的值;
(2)利用图中条件,求出一次函数的解析式;
(3)如图,写出当x取何值时,一次函数值小于反比例函数值?
(4)坐标平面内是否存在点P,使以O、D、P、C为顶点的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y=
k
2x
和一次函数y=2x-1图象交于A(1,b)点,且一次函数的图象经过(2,b+k)点.
(1)求A点坐标及反比例函数的解析式;
(2)请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)探索归纳.用等号或不等号填空:
①5+6______2
5×6

②12+13______2
12×13

③5+0______2
5×0

④7+7______2
7×7

用非负数a、b表示你发现的规律并予以证明.
(2)结论应用.已知点A(-3,0),B(0,-4),P是双曲线y=
12
x
(x>0)
上任意一点,过点P作PC⊥x轴于C,过点p作PD⊥y轴于D,连接AB、BC、CD、DA.
求四边形ABCD的面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=-x+m与双曲线y=
n
x
交于第四象限一点P(a,b),且a,b是一元二次方程x2-2x-3=0的两根.
(1)求一次函数、反比例函数的解析式;
(2)直线与双曲线的另一个交点为Q,求△POQ的面积(O为直角坐标系的原点).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=
k
x
(k为常数,且k>0)在第一象限的图象交于点E,m.过点E作EM⊥y轴于M,过点m作m0⊥x轴于0,直线EM与m0交于点C.若
BE
Bm
=
1
m
(m为大于l的常数).记△CEm的面积为S1,△OEm的面积为S2,则
S1
S2
=______.&0bsp;(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,OACB是矩形,C(a,b),点D为BC中点,反比例函数y=
4
x
的图象经过点D且交AC于点E.
(1)求证:△AOE与△BOD的面积相等;
(2)求证:点E是AC的中点;
(3)当OE⊥DE时,试求OB2-OA2的值.

查看答案和解析>>

同步练习册答案