精英家教网 > 初中数学 > 题目详情
28、如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间.
分析:根据题意推出∠BAC=∠CBA=30°,推出AC=BC=20,然后根据船航行的速度,即可推出从A点到C点用了多长时间,即可推出到达C点的具体时间,根据D点观测海岛在北偏西30°方向,即可推出△BCD为等边三角形,即BC=CD=BD=20,即可推出C点到达D点船所用的时间,即可推出船到达D点的时间.
解答:解:∵在A处观测海岛B在北偏东60°方向,
∴∠BAC=30°,
∵C点观测海岛B在北偏东30°方向,
∴∠BCD=60°,
∴∠BAC=∠CBA=30°,
∴AC=BC
∵D点观测海岛在北偏西30°方向,
∴∠BDC=60°,
∴∠BCD=60°,
∴∠CBD=60°,
∴△BCD为等边三角形,
∴BC=BD,
∵BC=20,
∴BC=AC=CD=20,
∵船以每小时10海里的速度从A点航行到C处,又以同样的速度继续航行到D处,
∴船从A点到达C点所用的时间为:20÷10=2(小时),
船从C点到达D点所用的时间为:20÷10=2(小时),
∵船上午11时30分在A处出发,
,:∵D点观测海岛B在北偏西30°方向
到达D点的时间为13时30分+2小时=15时30分,
答:轮船到达C处的时间为13时30分,到达D处的时间15时30分.
点评:本题主要考查等边三角形的判定与性质、外角的性质、余角的性质等知识点,关键在于通过求相关角的度数,推出相关边的关系,熟练运用航程、时间、速度的关系式,认真的进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,某轮船上午6时在A处测得灯塔P在北偏东30°的方向上,向东行驶至当天上午9时,轮船在B处测得灯塔P在北偏西60°的方向上,已知轮船行驶速度为20千米/时.
(1)在图中画出灯塔P的位置.
(2)量出船在B处时,离灯塔P的距离,求出它的实际距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间.

 


查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向;又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间。

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

如图所示,某船于上午11时30分在A处观测海岛B在北偏东60°,该船以10海里/时的速度向东航行到C处,再观测海岛在北偏东30°,且船距离海岛20海里.
(1)求该船达到C点的时间;  
(2)若该船从C点继续航行,何时达到B海岛正南的D点?

查看答案和解析>>

同步练习册答案