精英家教网 > 初中数学 > 题目详情
已知抛物线轴相交于两点(点在点的左侧),与轴相交于点

(1)点的坐标为        ,点的坐标为        
(2)在轴的正半轴上是否存在点,使以点为顶点的三角形与相似?若存在,求出点的坐标,若不存在,请说明理由.
(1);(2)存在,

试题分析:(1)令y=0,解关于x的一元二次方程求出A、B的坐标,令x=0求出点C的坐标,再根据顶点坐标公式计算即可求出顶点D的坐标;
(2)根据点A、C的坐标求出OA、OC的长,再分OA和OA是对应边,OA和OC是对应边两种情况,利用相似三角形对应边成比例列式求出OP的长,从而得解;
试题解析:(1)点的坐标为,点的坐标为
(2)在轴的正半轴上存在符合条件的点,设点的坐标为










∴符合条件的点有两个,
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).
(1)试写出y与x之间的函数关系式(不写x的取值范围);
(2)试写出z与x之间的函数关系式(不写x的取值范围);
(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)

(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点和点在抛物线上.

(1)求的值及点的坐标;
(2)点轴上,且满足△是以为直角边的直角三角形,求点的坐标;
(3)平移抛物线,记平移后点A的对应点为,点B的对应点为. 点M(2,0)在x轴上,当抛物线向右平移到某个位置时,最短,求此时抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y1=ax2+bx-3的图象经过点A(2,-3),B(-1,0),与y轴交于点C,与x轴另一交点交于点D.

(1)求二次函数的解析式;
(2)求点C、点D的坐标;
(3)若一条直线y2,经过C、D两点,请直接写出y1>y2时,的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两个正方形的周长和是10,如果其中一个正方形的边长为,则这两个正方形的面积的和S关于的函数关系式为
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(  )
A.a>0B.3是方程ax²+bx+c=0的一个根
C.a+b+c=0D.当x<1时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度与时间的函数关系的图象可能是(       )


①               ②                    ③                         ④
A.①B.③C.①或③D.②或④

查看答案和解析>>

同步练习册答案