精英家教网 > 初中数学 > 题目详情

【题目】如图,AOB是一钢架,且O=15°,为使钢架更加牢固,需在其内部添加一些钢管EFFGGH、…,添加的钢管长度都与OE相等,则最多能添加这样的钢管(  )

A. 2 B. 4 C. 5 D. 无数根

【答案】C

【解析】分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.

详解:如图所示,∠AOB=15°

OE=FE,

∴∠GEF=EGF=15°×2=30°

EF=GF,所以∠EGF=30°

∴∠GFH=15°+30°=45°

GH=GF

∴∠GHF=45°HGQ=45°+15°=60°

GH=HQ,GQH=60°QHB=60°+15°=75°

QH=QB

∴∠QBH=75°HQB=180-75°-75°=30°

故∠OQB=60°+30°=90°,不能再添加了.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组想测量河流的宽度AB,河流两岸AC,BD互相平行,河流对岸有两棵树A和C,且A、C之间的距离是60m,他们在D处测得∠BDC=36°,前行140米后测得∠BPA=45°,请根据这些数据求出河流的宽度.
(结果精确到0.1米,参考数据:tan36°≈0.73,sin36°≈0.59,cos36°≈0.81)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a、b、c满足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索规律,观察下面算式,解答问题.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)请猜想1+3+5+7+9+…+19=

(2)请猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)试计算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= (x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.

(1)求点A,B,D的坐标;
(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;
(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;
(2)连结AD,交OC于点E,求∠AEO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )

A.200米
B.200
C.220
D.100( +1)米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=﹣ x+1与x轴、y轴分别交于B点、A点,直线y=2x﹣2与x轴、y轴分别交于D点、E点,两条直线交于点C;

(1)求A、B、C、D、E的坐标;
(2)请用相似三角形的相关知识证明:AB⊥DE;
(3)求△CBD的外接圆的半径.

查看答案和解析>>

同步练习册答案