精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120°,BD=10.
(1)求证:CA=CD;
(2)求⊙O的半径.

【答案】分析:(1)可通过证明角相等来证边相等.连接OC,则OC⊥CD,那么∠ACO=30°;根据等边对等角我们不难得出∠A=30°,∠COD=60°,直角三角形OCD中,∠COD=60°,因此∠A=∠D=30°,由此便可得出CA=CD.
(2)在直角三角形OCD中,可用半径表示出OC,OD,有∠D的度数,可用正弦函数求出半径的长.
解答:(1)证明:连接OC.
∵DC切⊙O于点C,
∴∠OCD=90°.
又∵∠ACD=120°,
∴∠ACO=∠ACD-∠OCD=120°-90°=30°.
∵OC=OA,
∴∠A=∠ACO=30°,
∴∠COD=60°.
∴∠D=30°,
∴CA=DC.

(2)解:∵sin∠D===
sin∠D=sin30°=
=
解得OB=10.
即⊙O的半径为10.
点评:本题主要考查了解直角三角形的应用和切线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案