A. | 只有一个正确 | B. | 只有一个不正确 | C. | 都正确 | D. | 都不正确 |
分析 利用全等三角形的判定方法SAS可证明△OAD≌△OBC,进而可得∠OCB=∠ODA,再利用AAS判定△ACE≌△BDE,可得AE=BE,然后再证明△AOE≌△BOE,可证出OE平分∠AOB.
解答 解:如图所示:
∵在△ABC和△OAD中$\left\{\begin{array}{l}{AO=BO}\\{∠AOD=∠BOC}\\{CO=DO}\end{array}\right.$,
∴△OAD≌△OBC(SAS),故①正确;
∵OA=OB,OC=OD,
∴CO-AO=DO-BO,
即AC=DB,
∵△OAD≌△OBC,
∴∠OCB=∠ODA,
在△AEC和△BED中$\left\{\begin{array}{l}{∠OCB=∠ODA}\\{∠AEC=∠BED}\\{AC=BD}\end{array}\right.$,
∴△ACE≌△BDE(AAS),故②正确;
∴AE=BE,
在△OAE和△OBE中$\left\{\begin{array}{l}{AO=BO}\\{OE=OE}\\{AE=BE}\end{array}\right.$,
∴△AOE≌△BOE(SSS),
∴∠AOE=∠BOE,
∴OE平分∠AOB,故③正确,
故选:C.
点评 此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0.86-2$\sqrt{5}$+π | B. | 5.14-π | C. | 2$\sqrt{5}$-7.14+π | D. | -1.14+π |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com