精英家教网 > 初中数学 > 题目详情
1.如图,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE与DE相交于点E,求证∠E=90°
证明:∵AB∥CD(已知)
∴∠ABD+∠BDC=180°(两直线平行,同旁内角互补)
∵BE平分∠ABD(已知)
∴∠EBD=$\frac{1}{2}$∠ABD(角平分线的定义)
又∵DE平分∠BDC
∴∠BDE=$\frac{1}{2}$∠CDB(角平分线的定义)
∴∠EBD+∠EDB=$\frac{1}{2}$∠ABD+$\frac{1}{2}$∠BDC(等式的性质)
=$\frac{1}{2}$(∠ABD+∠BDC)=90°
∴∠E=90°.

分析 根据角平分线的定义,∠EBD等于∠ABD的一半,∠BDE等于∠BDC的一半,又∠ABD+∠CDB=180°,所以∠EBD+∠BDE=90°,所以∠BED=90°.

解答 证明:∵AB∥CD(已知)
∴∠ABD+∠BDC=180°(两直线平行,同旁内角互补)
∵BE平分∠ABD(已知)
∴∠EBD=$\frac{1}{2}$∠ABD(角平分线的定义)
又∵DE平分∠BDC
∴∠BDE=$\frac{1}{2}$∠CDB(角平分线的定义)
∴∠EBD+∠EDB=$\frac{1}{2}$∠ABD+$\frac{1}{2}$∠BDC(等式的性质)
=$\frac{1}{2}$(∠ABD+∠BDC)=90°
∴∠E=90°.
故答案为:已知,两直线平行,同旁内角互补,已知,∠ABD,角平分线的定义,∠CDB,角平分线的定义,等式的性质

点评 本题考查了角平分线定义,平行线的性质,三角形的内角和定理,关键是求出∠EBD+∠EDB的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.计算:$\sqrt{(\sqrt{7}-3)^{2}}$+($\sqrt{7}$-3)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知火车站的坐标为(2,2),文化宫的坐标为(-1,3).
(1)请你根据题目条件,画出平面直角坐标系;
(2)写出体育场,市场,超市的坐标;
(3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(-2,-2),(2,-2),请在图中标出A,B,C的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知x=-2是关于x的方程x2-2ax+a2=0的一个根,则a的值为-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:2-1+$\sqrt{12}$-4sin60°-(-$\sqrt{3}$+π)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值(3x+2)(3x-2)-9x(x-1)+(x-2)2,其中x=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在边长为1个单位长度的小正方形组成的12×10的长方形网格中有一四边形,请你解决下列问题:
(1)作出四边形关于直线AB的轴对称图形;
(2)将你画出的部分连同原图形绕点O逆时针旋转90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0
∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)a2+b2-4a+4=0,则a=2.b=0.
(2)已知x2+2y2-2xy+6y+9=0,求xy的值.
(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算
(1)a(1-a)+(a+1)2-1
(2)(2y-z)2-(z+2y)(2y-z)

查看答案和解析>>

同步练习册答案