【题目】下图的方格纸中有若干个点,若A、B两点关于过某点的直线对称,这个点可能是( ).
A.P1B.P2C.P3D.P4
【答案】C
【解析】
根据两点的对称轴即两点连线的垂直平分线,利用勾股定理分别求出选项中各点到A、B的距离,再根据垂直平分线的性质即可判断.
解:连接P1B,P2A,P3A,P3B,P4B,设正方形的边长为1,P4O=a,如下图所示
∵A、B两点关于过某点的直线对称
∴此点在AB的垂直平分线上
∴此点到A、B的距离相等
由图可知:P1A=1
根据勾股定理:P1B=
∴P1A≠P1B,故A选项不符合题意;
由图可知:P2B=2
根据勾股定理:P2A=
∴P2B≠P2A,故B选项不符合题意;
根据勾股定理:P3A=
P3B=
∴P3A= P3B,故C选项符合题意;
由图可知P4A=1+a
根据勾股定理:P4B=
当P4A=P4B时,即1+a=
解得:a=0(与图不符)
∴P4A≠P4B,故D选项不符合题意.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,PA,PB是⊙O的切线,A,B为切点,AC为⊙O的直径,弦BD⊥AC下列结论:①∠P+∠D=180°;②∠COB=∠DAB;③∠DBA=∠ABP;④∠DBO=∠ABP.其中正确的只有( )
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象如图所示,有以下结论:①;②;③;④;⑤其中所有正确结论的序号是( )
A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=∠C,AB=8,BC=6,点D为AB的中点,点P在线段BC上以每秒2个单位的速度由点B向点C运动,同时点Q在线段CA上以每秒a个单位的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).
(1)用含t的代数式表示线段PC的长;
(2)若点P、Q的运动速度相等,t=1时,△BPD与△CQP是否全等,请说明理由.
(3)若点P、Q的运动速度不相等,△BPD与△CQP全等时,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,∠ABC=30°,BD平分∠ABC交AC于点D,BC的垂直平分线EF交BC于点E,交BD于点F,若BF=6,则AC的长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走一段距离时到点D处,侧得∠BDF=65°.若直线AB与EF之间的距离为60米.
(1)设池塘两端的距离AB=x米,试用含x的代数式表示CD的长;
(2)当CD=100米时,求A、B两点的距离(计算结果精确到个位).(参考数据:sin45°≈0.71,cos65°≈0.42,tan65°≈2.14.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设,.
①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com