精英家教网 > 初中数学 > 题目详情
19.如图,已知四边形ABCD内接于⊙O,A是$\widehat{BDC}$的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且$\widehat{BF}=\widehat{AD}$.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.

分析 (1)欲证△ADC∽△EBA,只要证明两个角对应相等就可以.可以转化为证明且$\widehat{BF}=\widehat{AD}$就可以;
(2)A是$\widehat{BDC}$的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.

解答 (1)证明:∵四边形ABCD内接于⊙O,
∴∠CDA=∠ABE.
∵$\widehat{BF}=\widehat{AD}$,
∴∠DCA=∠BAE.
∴△ADC∽△EBA;

(2)解:∵A是$\widehat{BDC}$的中点,
∴$\widehat{AB}=\widehat{AC}$
∴AB=AC=8,
∵△ADC∽△EBA,
∴∠CAD=∠AEC,$\frac{DC}{AB}=\frac{AC}{AE}$,
即$\frac{5}{8}=\frac{8}{AE}$,
∴AE=$\frac{64}{5}$,
∴tan∠CAD=tan∠AEC=$\frac{AC}{AE}$=$\frac{8}{\frac{64}{5}}$=$\frac{5}{8}$.

点评 本题考查的是圆的综合题,涉及到弧、弦的关系,等腰三角形的性质,相似三角形的判定与性质等知识,根据题意作出辅助线,构造出相似三角形是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图1,在直角坐标系xoy中,直线l与x、y轴分别交于点A(4,0)、B(0,$\frac{16}{3}$)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.
(1)求证:y轴是⊙G的切线;
(2)请求⊙G的半径r,并直接写出点C的坐标;
(3)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下面给出的是一些产品的图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为(  )
A.$\frac{2\sqrt{2}}{5}$B.$\frac{9\sqrt{2}}{20}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{4\sqrt{2}}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:
 组别 分组 频数(人数) 频率
 1 10≤t<30  0.16
 2 30≤t<50 20 
 3 50≤t<70  0.28
 4 70≤t<90 6 
 5 90≤t<110  
(1)将表中空格处的数据补全,完成上面的频数、频率分布表;
(2)请在给出的平面直角坐标系中画出相应的频数直方图;
(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.
(1)求证:△ADE≌△CBF;
(2)若AC与BD相交于点O,求证:AO=CO.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{9}$D.$\frac{1}{12}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于(  )
A.24cm2B.48cm2C.24πcm2D.12πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某商场经销一种儿童益智玩具,已知成批购进时的单价是50元,规定销售时单价不能低于进价,每件的利润率不能超过40%.试销过程中发现:销售单价是60元时,月销售量是400件,而销售单价每上涨1元,月销售量就减少10件.设每件玩具的销售单价为x(元)时,月销售利润为y(元).(利润=售价-进价)
(1)求y与x的函数关系式;
(2)每件玩具的销售单价为多少元时,每月能获得的利润恰好是5250元?
(3)每件玩具的销售单价为多少元时,每月能获得的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案