善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形
;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形
;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定
(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是
=
.(不妨设AD=a,BC=b,AB=c,CD=d.不要求证明)