精英家教网 > 初中数学 > 题目详情
善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形
 
;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形
 
;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定
 
(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是
APPB
=
 
.(不妨设AD=a,BC=b,AB=c,CD=d.不要求证明)
精英家教网
分析:两个梯形相似,因而两个梯形的对应腰的相等,对应底的比相等;这个图形中判定相似要同时满足这几个条件.反之,若相似则两个梯形的对应腰的相等,对应底的比相等.
解答:解:问题一:(1)两个梯形的腰相等,
即腰的比是1:2,而上底的比是1:1,
因而这两个梯形一定不相似;
(2)不相似.
问题二:(1)不相似;
(2)梯形APQD与梯形PBCQ相似,
AD
PQ
=
PQ
BC
,即
2
PQ
=
PQ
8

解得:PQ=4.
AP
PB
=
AD
PQ
=
2
4
=
1
2

又∵AP+PB=6,
∴AP=2
(3)如果梯形APQD∽梯形PBCQ,
AD
PQ
=
PQ
BC
AP
PB
=
AD
PQ

∵AD=a,BC=b,
∴PQ=
AD•BC
=
ab

AP
PB
=
a
ab
=
ab
b
点评:本题考查了多边形相似的性质,对应边的比相等,反之,相似图形的判定方法是对应角相等,对应边的比相等.
练习册系列答案
相关习题

科目:初中数学 来源:第29章《相似形》中考题集(23):29.6 相似多边形及其性质(解析版) 题型:解答题

善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定______(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是=______

查看答案和解析>>

科目:初中数学 来源:第24章《图形的相似》中考题集(04):24.2 相似图形的性质(解析版) 题型:解答题

善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定______(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是=______

查看答案和解析>>

科目:初中数学 来源:第4章《相似三角形》中考题集(29):4.5 相似多边形(解析版) 题型:解答题

善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定______(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是=______

查看答案和解析>>

科目:初中数学 来源:2009-2010学年北京市房山区九年级(上)期中数学试卷(解析版) 题型:解答题

善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
问题一:平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似;
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
问题二:平行于梯形底边的直线截两腰所得的两个小梯形是否相似?
(1)从特殊平行线入手探究.梯形的中位线截两腰所得的两个小梯形______;(填“相似”或“不相似”或“相似性无法确定”.不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点P,Q在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由;
(3)一般结论:对于任意梯形(如图③),一定______(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似.若存在,则确定这条平行线位置的条件是=______

查看答案和解析>>

同步练习册答案