精英家教网 > 初中数学 > 题目详情
先看例子,再解类似的题目.
解方程:|x|+1=3.
解法一:当x≥0时,原方程化为x+1=3.解方程,得x=2;当x<0时,原方程化为-x+1=3.解方程,得x=-2.所以方程|x|+1=3的解是x=2或x=-2.
解法二:移项,得|x|=3-1.合并同类项,得|x|=2.由绝对值的意义知x=±2,所以原方程的解为x=2或x=-2.
用你学到的方法解方程:2|x|-3=5.(用两种方法解)
分析:解法一:讨论x≥0与x<0时,两种情况即可求出解;
解法二:方程变形后,利用绝对值的代数意义化简,即可求出解.
解答:解:解法一:当x≥0时,原方程化为2x-3=5,解得:x=4;
当x<0时,原方程化为-2x-3=5,解得:x-4;
解法二:方程变形为2|x|=8,即|x|=4,解得:x=±4.
则方程的解为4或-4.
点评:此题考查了含绝对值符合的一元一次方程,弄清题中的阅读材料中的解法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读下面例题的解题过程,再解答后面的题目.
例题:解方程 (x2-1)2-5(x2-1)+4=0
我们可以将x2-1视为一个整体,然后设y=x2-1,则 (x2-1)2=y2,原方程转化为y2-5y+4=0.解得y1=1,y2=4.
当y=1时,x2-1=1,所以x=±
2
;当y=4时,x2-1=4,所以x=±
5

∴原方程的解为:x1=
2
,x2=-
2
,x3=
5
,x4=-
5

题目:用类似的方法试解方程(x2+x)2+(x2+x)=6.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:
在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x-2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
(1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|;
知识应用:
(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9.
提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

先看例子,再解类似的题目.
解方程:|x|+1=3.
解法一:当x≥0时,原方程化为x+1=3.解方程,得x=2;当x<0时,原方程化为-x+1=3.解方程,得x=-2.所以方程|x|+1=3的解是x=2或x=-2.
解法二:移项,得|x|=3-1.合并同类项,得|x|=2.由绝对值的意义知x=±2,所以原方程的解为x=2或x=-2.
用你学到的方法解方程:2|x|-3=5.(用两种方法解)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读理解:
在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x-2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
(1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|;
知识应用:
(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9.
提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?

查看答案和解析>>

同步练习册答案