精英家教网 > 初中数学 > 题目详情
12.如图,在四边形ABCD中,AD平行且等于BC,AB平行且等于DC,AD⊥AB,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点.
(1)求证:四边形AECF为平行四边形;
(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;
(3)若四边形ABCD的边AB=6,BC=4,求△APB的面积.

分析 (1)由折叠的性质,结合直角三角形的性质可证明AF∥EC,则可证明四边形AECF为平行四边形;
(2)由等边三角形的性质可求得∠BAP=60°且PA=PE,再由折叠的性质可求得∠BEC=∠PEC=60°,则可证明△APB≌△EPC;
(3)利用Rt△EBC的面积可求得BQ,再由折叠的性质可求得BP,在Rt△ABP中,由勾股定理可求得AP,则可求得其面积.

解答 (1)证明:
由折叠得到BE=PE,EC⊥PB,又E为AB中点,
∴AE=PE=EB,
∴∠APB=90°,
即BP⊥AF,
∴AF∥EC,
∴四边形AECF为平行四边形;
(2)证明:
∵△AEP是等边三角形,
∴∠AEP=60°,AP=PE,
由折叠可得∠PEC=PAB=60°,
在Rt△ABP和Rt△EBC中
$\left\{\begin{array}{l}{∠APB=∠EPC}\\{AP=EP}\\{∠BAP=∠CEP}\end{array}\right.$
∴Rt△ABP≌Rt△EBC(ASA);
(3)解:
∵AB=6,
∴EB=3,
在Rt△EBC中,EB=3,BC=4,EC=5,
∵S△EBC=$\frac{1}{2}$EB•BC=$\frac{1}{2}$EC•BQ,
∴BQ=$\frac{12}{5}$,
∴BP=2BQ=$\frac{24}{5}$,
在Rt△ABP中,AB=6,BP=$\frac{24}{5}$,
由勾股定理得AP=$\sqrt{A{B}^{2}-B{P}^{2}}$=$\frac{18}{5}$,
∴S△APB=$\frac{1}{2}$AP•BP=$\frac{1}{2}$×$\frac{18}{5}$×$\frac{24}{5}$=$\frac{216}{25}$.

点评 本题为四边形的综合应用,涉及平行四边形的判定和性质、折叠的性质、全等三角形的判定、等边三角形的性质、勾股定理及三角形的面积等知识.在(1)中证得BP⊥AF是解题的关键,在(2)中注意全等三角形的判定方法,在(3)中求得BP的长是解题的关键.本题考查知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.分解因式:
(1)3m2-6mn+3n2
(2)a-4ab2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.
(1)求点B、点C的坐标,并求△COB的面积.
(2)当x取何值时y1=y2;当x取何值时y1>y2
(3)当x为1时,直线m交OC于Q点,求△OPQ的面积.
(4)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.没有加减运算的代数式是单项式B.单项式$\frac{3{x}^{2}y}{4}$的系数是3,次数是2
C.单项式x既没有系数,也没有次数D.单项式-a2bc的系数是-1,次数是4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:$\sqrt{27}$-$\root{3}{8}$-tan60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:|$\sqrt{3}$-2|+(π-2016)0+$\frac{\sqrt{6}×\sqrt{3}}{\sqrt{2}}$-(-$\frac{1}{2}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:-12016+4×(-3)2+(-6)÷(-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,网格中每个小正方形的边长均为1,已知三角形ABC及三角形外一点D,平移三角形ABC使点A(0,4)移动到点D(3,2),得到三角形DEF,B(-2,3)的对应点为E,C(-1,-1)对应点F.
(1)画出三角形DEF;
(2)写出点E、F的坐标;
(3)直接写出三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.2013年,某市一楼盘以毎平方米5000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金的周转,决定进行降价促销,经过连续两年的下调后,2015年的均价为每平方米4050元.
(1)求平均每年下调的百分率;
(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金45万元,张强的愿望能否实现?(房价每平方米按照均价计算)

查看答案和解析>>

同步练习册答案