精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.
(1)求直线AB的解析式;
(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;
(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.
(1)直线AB的解析式为y=﹣2x+4.
(2)当0<t<2时,S=﹣t2+t(0<t<2),
当2<t≤4时,S=t2﹣t(2<t≤4).
(3)t1=,H1),
t2=20﹣8,H2(10﹣4,4).

试题分析:(1)根据待定系数法即可得到;
(2)过点Q作QF//x轴交y轴于点F,有两种情况:当0<t<2时,PF=4﹣2t,当2<t≤4时,PF=2t﹣4,然后根据面积公式即可求得;
(3)由菱形的邻边相等即可得到.
试题解析:(1)∵C(2,4),
∴A(0,4),B(2,0),
设直线AB的解析式为y=kx+b,

解得
∴直线AB的解析式为y=﹣2x+4.

(2)如图2,过点Q作QF⊥y轴于F,
∵PE//OB,

∴有AP=BQ=t,PE=t,AF=CQ=4﹣t,
当0<t<2时,PF=4﹣2t,
∴S=PE•PF=×t(4﹣2t)=t﹣t2
即S=﹣t2+t(0<t<2),
当2<t≤4时,PF=2t﹣4,
∴S=PE•PF=×t(2t﹣4)=t2﹣t(2<t≤4).
(3)t1=,H1),
t2=20﹣8,H2(10﹣4,4).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.
(1)求点C的坐标;
(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.
(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;
(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

无论k取任何实数,对于直线都会经过一个固定的点,我们就称直线恒过定点.
(1)无论取任何实数,抛物线恒过定点,直接写出定点A的坐标;
(2)已知△ABC的一个顶点是(1)中的定点,且∠B,∠C的角平分线分别是y轴和直线,求边BC所在直线的表达式;
(3)求△ABC内切圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数y=2x+1的图象不经过第______象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于一次函数y=kx+b(k,b为常数,且k≠0).当k>0时,y随x的增大而______;当______时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知点A在双曲线上,点B在直线上,且A,B两点关于轴对称,设点A的坐标为(),则+的值是(  )
A.-10B.-8C.6D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过(  )
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

根据下图所示程序计算函数值,若输入的的值为,则输出的函数值为
A.B.C.D.

查看答案和解析>>

同步练习册答案