精英家教网 > 初中数学 > 题目详情
20.如图,点A的坐标为(8,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF、等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为4.

分析 作EN⊥y轴于N,求出∠NBE=∠BAO,证△ABO≌△BEN,求出∠OBF=∠FBP=∠BNE=90°,证△BFP≌△NEP,推出BP=NP,即可得出答案.

解答 解:如图,作EN⊥y轴于N,
∵∠ENB=∠BOA=∠ABE=90°,
∴∠OBA+∠NBE=90°,∠OBA+∠OAB=90°,
∴∠NBE=∠BAO,
在△ABO和△BEN中,$\left\{\begin{array}{l}{∠AOB=∠BNE}\\{∠BAO=∠NBE}\\{AB=BE}\end{array}\right.$,
∴△ABO≌△BEN(AAS),
∴OB=NE=BF,
∵∠OBF=∠FBP=∠BNE=90°,
在△BFP和△NEP中,$\left\{\begin{array}{l}{∠FPB=∠EPN}\\{∠FBP=∠ENP}\\{BF=NE}\end{array}\right.$,
∴△BFP≌△NEP(AAS),
∴BP=NP,
又∵点A的坐标为(8,0),
∴OA=BN=8,
∴BP=NP=4.
故答案是:4.

点评 本题考查了全等三角形的性质和判定,坐标与图形性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.(1)如图1,AC=AE,∠1=∠2,AB=AD,求证:BC=DE;
(2)如图2,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解方程:
(1)(2x-1)2+3(2x-1)+2=0
(2)2x2+4x-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程|x+9|=1的两根(a<b),(c-16)2与|d-20|互为相反数.

(1)求a、b、c、d的值;
(2)若A点以6个单位长度/秒的速度向右匀速运动,同时C点以2个单位长度/秒向左匀速运动,设运动时间为t秒,问t为多少时,A、C两点相距4个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.△ABC中,∠A=90°,AB=AC,CE是角平分线.
(1)如图1,BE的垂直平分线分别交BE、BC于F、G,求证:BG=AE.
(2)如图2,BF⊥CE于F,BF=2,求△EBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).
(1)求该抛物线的表达式,并写出其对称轴;
(2)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知二次函数y=-$\frac{1}{2}$x2-3x-$\frac{5}{2}$,设自变量的值分别为x1,x2,x3,且-3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是(  )
A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AO⊥OM,OA=8$\sqrt{2}$,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度为4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.利用平方差公式直接写出结果50$\frac{1}{3}$×49$\frac{2}{3}$=$\frac{22499}{9}$.

查看答案和解析>>

同步练习册答案