精英家教网 > 初中数学 > 题目详情
7.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1、B2、B3…都在直线y=$\frac{\sqrt{3}}{3}$x上,则点A2017的坐标为(2017$\sqrt{3}$,2019).

分析 根据题意得出直线AA1的解析式为:y=$\frac{\sqrt{3}}{3}$x+2,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.

解答 解:过B1向x轴作垂线B1C,垂足为C,
由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,
∴CO=OB1cos30°=$\sqrt{3}$,
∴B1的横坐标为:$\sqrt{3}$,则A1的横坐标为:$\sqrt{3}$,
连接AA1,可知所有三角形顶点都在直线AA1上,
∵点B1,B2,B3,…都在y=$\frac{\sqrt{3}}{3}$x上,AO=2,
∴直线AA1的解析式为:y=$\frac{\sqrt{3}}{3}$x+2,
∴y=$\frac{\sqrt{3}}{3}$×$\sqrt{3}$+2=3,
∴A1($\sqrt{3}$,3),
同理可得出:A2的横坐标为:2$\sqrt{3}$,
∴y=$\frac{\sqrt{3}}{3}$×2$\sqrt{3}$+2=4,
∴A2(2$\sqrt{3}$,4),
∴A3(3$\sqrt{3}$,5),

A2017(2017$\sqrt{3}$,2019).
故答案为:(2017$\sqrt{3}$,2019).

点评 本题为规律型题目,利用等边三角形和直角三角形的性质求得B1的坐标,进而求得A1的坐标,从而总结出点的坐标的规律是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,点A(-1,m)是双曲线y1=$\frac{k}{x}$与直线y2=-x-(k+1)在第二象限的交点,另一个交点C在第四象限,AB⊥x轴于B,且cos∠AOB=$\frac{\sqrt{10}}{10}$
(1)求m的值;
(2)求△AOC的面积;
(3)直接写出使y1>y2成立的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:$\frac{x}{x+2}$-$\frac{8}{{x}^{2}-4}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销售量为x(件),其中x>0.
若在甲地销售,每件售价y(元)与x之间的函数关系式为y=-$\frac{1}{10}$x+100,每件成本为20元,设此时的年销售利润为w(元)(利润=销售额-成本).
若在乙地销售,受各种不确定因素的影响,每件成本为a元(a为常数,18≤a≤25 ),每件售价为98元,销售x(件)每年还需缴纳$\frac{1}{10}$x2元的附加费.设此时的年销售利润为w(元)(利润=销售额-成本-附加费).
(1)当a=18,且x=100是,w=7000元;
(2)求w与x之间的函数关系式(不必写出x的取值范围),当w=15000时,若使销售量最大,求x的值;
(3)为完成x件的年销售任务,请你通过分析帮助公司决策,应选择在甲地还是在乙地销售才能使该公司所获年利润最大.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为6$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,在矩形ABCD中,有一个菱形BFDE(点E、F分别在线段AB、CD上),记它们的面积分别为SABCD和SBFDE.现给出下列命题:
(1)若$\frac{{S}_{ABCD}}{{S}_{BFDE}}$=$\frac{2+\sqrt{3}}{2}$,则tan∠EDF=$\frac{\sqrt{3}}{3}$      
(2)若DE2=BD•EF,则DF=2AD
那么,下面判断正确的是(  )
A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解不等式:$\frac{x+6}{3}$≥2(x-4)-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.将4个数a、b、c、d排成两行两列,两边各加一条竖直线,记成$\left|\begin{array}{cc}a&b\\ c&d\end{array}\right|$,定义$\left|\begin{array}{cc}a&b\\ c&d\end{array}\right|$=ad-bc,上述记号叫做2阶行列式,若$\left|\begin{array}{cc}x+1&1-x\\ 1-x&x+1\end{array}\right|$=8,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:
 污水处理器型号 A型 B型
 处理污水能力(吨/月) 240 180
已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.
(1)求每台A型、B型污水处理器的价格;
(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?

查看答案和解析>>

同步练习册答案