精英家教网 > 初中数学 > 题目详情
(本题满分12分)
【小题1】(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面请你完成余下的证明过程)

【小题2】(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

【小题3】(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=        °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

【小题1】
【小题2】
【小题3】解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分12分)
【小题1】(1)如图1,圆内接中,的半径,
于点,求证:阴影部分四边形的面积是的面积的

【小题2】(2)如图2,若保持角度不变,求证:当绕着点旋转时,由两条半径
的两条边围成的图形(图中阴影部分)面积始终是的面积的

查看答案和解析>>

科目:初中数学 来源:2011年江苏省洋思中学九年级月考数学卷 题型:解答题

( 本题满分12分)
【小题1】(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为        

【小题2】(2)观察发现小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由

(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小。

查看答案和解析>>

科目:初中数学 来源:2012届江苏省启东市东海中学九年级寒假作业检测数学卷 题型:解答题

(本题满分12分)
【小题1】(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面请你完成余下的证明过程)

【小题2】(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

【小题3】(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=        °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年甘肃省庄浪县阳川中学九年级第一学期期末测试数学卷 题型:解答题

(本题满分12分)
【小题1】(1)如图1,圆内接中,的半径,
于点,求证:阴影部分四边形的面积是的面积的

【小题2】(2)如图2,若保持角度不变,求证:当绕着点旋转时,由两条半径
的两条边围成的图形(图中阴影部分)面积始终是的面积的

查看答案和解析>>

同步练习册答案